Patents by Inventor Joel Cizeron

Joel Cizeron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9352295
    Abstract: The present disclosure provides oxidative coupling of methane (OCM) systems for small scale and world scale production of olefins. An OCM system may comprise an OCM subsystem that generates a product stream comprising C2+ compounds and non-C2+ impurities from methane and an oxidizing agent. At least one separations subsystem downstream of, and fluidically coupled to, the OCM subsystem can be used to separate the non-C2+ impurities from the C2+ compounds. A methanation subsystem downstream and fluidically coupled to the OCM subsystem can be used to react H2 with CO and/or CO2 in the non-C2+ impurities to generate methane, which can be recycled to the OCM subsystem. The OCM system can be integrated in a non-OCM system, such as a natural gas liquids system or an existing ethylene cracker.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: May 31, 2016
    Assignee: Siluria Technologies, Inc.
    Inventors: Humera A. Rafique, Srinivas Vuddagiri, Guido Radaelli, Erik C. Scher, Jarod McCormick, Joel Cizeron
  • Patent number: 9334204
    Abstract: The present disclosure provides oxidative coupling of methane (OCM) systems for small scale and world scale production of olefins. An OCM system may comprise an OCM subsystem that generates a product stream comprising C2+ compounds and non-C2+ impurities from methane and an oxidizing agent. At least one separations subsystem downstream of, and fluidically coupled to, the OCM subsystem can be used to separate the non-C2+ impurities from the C2+ compounds. A methanation subsystem downstream and fluidically coupled to the OCM subsystem can be used to react H2 with CO and/or CO2 in the non-C2+ impurities to generate methane, which can be recycled to the OCM subsystem. The OCM system can be integrated in a non-OCM system, such as a natural gas liquids system or an existing ethylene cracker.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: May 10, 2016
    Assignee: Siluria Technologies, Inc.
    Inventors: Guido Radaelli, Humera A. Rafique, Srinivas Vuddagiri, Erik C. Scher, Jarod McCormick, Joel Cizeron, Bipinkumar Patel, Satish Lakhapatri
  • Patent number: 9328297
    Abstract: Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: May 3, 2016
    Assignee: Siluria Technologies, Inc.
    Inventors: Greg Nyce, Peter Czerpak, Carlos Faz, Jarod McCormick, William Michalak, Bipinkumar Patel, Guido Radaelli, Tim A. Rappold, Ron Runnebaum, Erik C. Scher, Aihua Zhang, Joel Cizeron
  • Patent number: 9321702
    Abstract: Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: April 26, 2016
    Assignee: Siluria Technologies, Inc.
    Inventors: Greg Nyce, Peter Czerpak, Carlos Faz, Jarod McCormick, William Michalak, Bipinkumar Patel, Guido Radaelli, Tim A. Rappold, Ron Runnebaum, Erik C. Scher, Aihua Zhang, Joel Cizeron
  • Patent number: 9321703
    Abstract: Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: April 26, 2016
    Assignee: Siluria Technologies, Inc.
    Inventors: Greg Nyce, Peter Czerpak, Carlos Faz, Jarod McCormick, William Michalak, Bipinkumar Patel, Guido Radaelli, Tim A. Rappold, Ron Runnebaum, Erik C. Scher, Aihua Zhang, Joel Cizeron
  • Publication number: 20150329439
    Abstract: Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
    Type: Application
    Filed: July 1, 2015
    Publication date: November 19, 2015
    Inventors: Greg Nyce, Peter Czerpak, Carlos Faz, Jarod McCormick, William Michalak, Bipinkumar Patel, Guido Radaelli, Tim A. Rappold, Ron Runnebaum, Erik C. Scher, Aihua Zhang, Joel Cizeron
  • Publication number: 20150329438
    Abstract: Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
    Type: Application
    Filed: July 1, 2015
    Publication date: November 19, 2015
    Inventors: Greg Nyce, Peter Czerpak, Carlos Faz, Jarod McCormick, William Michalak, Bipinkumar Patel, Guido Radaelli, Tim A. Rappold, Ron Runnebaum, Erik C. Scher, Aihua Zhang, Joel Cizeron
  • Publication number: 20150307415
    Abstract: The present disclosure provides oxidative coupling of methane (OCM) systems for small scale and world scale production of olefins. An OCM system may comprise an OCM subsystem that generates a product stream comprising C2+ compounds and non-C2+ impurities from methane and an oxidizing agent. At least one separations subsystem downstream of, and fluidically coupled to, the OCM subsystem can be used to separate the non-C2+ impurities from the C2+ compounds. A methanation subsystem downstream and fluidically coupled to the OCM subsystem can be used to react H2 with CO and/or CO2 in the non-C2+ impurities to generate methane, which can be recycled to the OCM subsystem. The OCM system can be integrated in a non-OCM system, such as a natural gas liquids system or an existing ethylene cracker.
    Type: Application
    Filed: July 1, 2015
    Publication date: October 29, 2015
    Inventors: Humera A. Rafique, Srinivas Vuddagiri, Guido Radaelli, Erik C. Scher, Jarod McCormick, Joel Cizeron
  • Publication number: 20150232395
    Abstract: Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
    Type: Application
    Filed: January 7, 2015
    Publication date: August 20, 2015
    Inventors: Greg Nyce, Richard Black, Peter Czerpak, Carlos Faz, Erik Freer, Hatem Harraz, Ajay Madgavkar, Jarod McCormick, William Michalak, Bipinkumar Patel, Guido Radaelli, Tim A. Rappold, Ron Runnebaum, Erik C. Scher, Aihua Zhang, Hassan Taheri, Humera A. Rafique, Joel Cizeron, Jin Ki Hong, Wayne Schammel
  • Publication number: 20150210610
    Abstract: The present disclosure provides oxidative coupling of methane (OCM) systems for small scale and world scale production of olefins. An OCM system may comprise an OCM subsystem that generates a product stream comprising C2+ compounds and non-C2+ impurities from methane and an oxidizing agent. At least one separations subsystem downstream of, and fluidically coupled to, the OCM subsystem can be used to separate the non-C2+ impurities from the C2+ compounds. A methanation subsystem downstream and fluidically coupled to the OCM subsystem can be used to react H2 with CO and/or CO2 in the non-C2+ impurities to generate methane, which can be recycled to the OCM subsystem. The OCM system can be integrated in a non-OCM system, such as a natural gas liquids system or an existing ethylene cracker.
    Type: Application
    Filed: January 8, 2015
    Publication date: July 30, 2015
    Inventors: Humera A. Rafique, Srinivas Vuddagiri, Hatem Harraz, Guido Radaelli, Erik C. Scher, Jarod McCormick, Rahul Iyer, Suchia Duggal, Joel Cizeron, Jin Ki Hong
  • Publication number: 20150152025
    Abstract: In an aspect, the present disclosure provides a method for the oxidative coupling of methane to generate hydrocarbon compounds containing at least two carbon atoms (C2+ compounds). The method can include mixing a first gas stream comprising methane with a second gas stream comprising oxygen to form a third gas stream comprising methane and oxygen and performing an oxidative coupling of methane (OCM) reaction using the third gas stream to produce a product stream comprising one or more C2+ compounds.
    Type: Application
    Filed: November 25, 2014
    Publication date: June 4, 2015
    Inventors: Joel CIZERON, Guido RADAELLI, Satish LAKHAPATRI, Erik FREER, Jin Ki HONG, Jarod MCCORMICK, David SHERIDAN, Charles REID, Roberto PELLIZZARI, Samuel WEINBERGER, Justin Dwight EDWARDS
  • Publication number: 20070151232
    Abstract: The invention provides devices and methods for generating H2 and CO in an O2 containing gas stream. The invention also provides devices and methods for removal of NOX from an O2 containing gas stream, particularly the oxygen-rich exhaust stream from a lean-burning engine, such as a diesel engine. The invention includes a fuel processor that efficiently converts added hydrocarbon fuel to a reducing mixture of H2 and CO. The added fuel may be a portion of the onboard fuel on a vehicle. The H2 and CO are incorporated into the exhaust stream and reacted over a selective lean NOX catalyst to convert NOX to N2. thereby providing an efficient means of NOX emission control.
    Type: Application
    Filed: March 8, 2007
    Publication date: July 5, 2007
    Applicant: Eaton Corporation
    Inventors: Ralph Dalla Betta, Joel Cizeron, David Sheridan
  • Patent number: 7181906
    Abstract: The invention provides devices and methods for generating H2 and CO in an O2 containing gas stream. The invention also provides devices and methods for removal of NOX from an O2 containing gas stream, particularly the oxygen-rich exhaust stream from a lean-burning engine, such as a diesel engine. The invention includes a fuel processor that efficiently converts added hydrocarbon fuel to a reducing mixture of H2 and CO. The added fuel may be a portion of the onboard fuel on a vehicle. The H2 and CO are incorporated into the exhaust stream and reacted over a selective lean NOX catalyst to convert NOX to N2. thereby providing an efficient means of NOX emission control.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: February 27, 2007
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: Ralph A. Dalla Betta, Joel Cizeron, David R. Sheridan
  • Patent number: 7165393
    Abstract: The present invention provides systems and methods to improve the performance and emission control of internal combustion engines equipped with nitrogen oxides storage-reduction (“NSR”) emission control systems. The system generally includes a NSR catalyst, a fuel processor located upstream of the NSR catalyst, and at least one fuel injection port. The fuel processor converts a fuel into a reducing gas mixture comprising CO and H2. The reducing gas mixture is then fed into the NSR catalyst, where it regenerates the NSR adsorbent, reduces the NOx to nitrogen, and optionally periodically desulfates the NSR catalyst. The fuel processor generally includes one or more catalysts, which facilitate reactions such as combustion, partial oxidation, and/or reforming and help consume excess oxygen present in an engine exhaust stream. The methods of the present invention provide for NSR catalyst adsorbent regeneration. Control strategies are provided to control the system and methods of the invention.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: January 23, 2007
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: Ralph Dalla Betta, Joel Cizeron
  • Publication number: 20060230748
    Abstract: The present invention provides systems and methods to improve the performance and emission control of internal combustion engines equipped with nitrogen oxides storage-reduction (“NSR”) emission control systems. The system generally includes a NSR catalyst, a fuel processor located upstream of the NSR catalyst, and at least one fuel injection port. The fuel processor converts a fuel into a reducing gas mixture comprising CO and H2. The reducing gas mixture is then fed into the NSR catalyst, where it regenerates the NSR adsorbent, reduces the NOx to nitrogen, and optionally periodically desulfates the NSR catalyst. The fuel processor generally includes one or more catalysts, which facilitate reactions such as combustion, partial oxidation, and/or reforming and help consume excess oxygen present in an engine exhaust stream. The methods of the present invention provide for NSR catalyst adsorbent regeneration using pulsed fuel flow. Control strategies are also provided.
    Type: Application
    Filed: June 9, 2006
    Publication date: October 19, 2006
    Applicant: Catalytica Energy Systems, Inc.
    Inventors: Ralph Dalla Betta, Joel Cizeron
  • Patent number: 7082753
    Abstract: The present invention provides systems and methods to improve the performance and emission control of internal combustion engines equipped with nitrogen oxides storage-reduction (“NSR”) emission control systems. The system generally includes a NSR catalyst, a fuel processor located upstream of the NSR catalyst, and at least one fuel injection port. The fuel processor converts a fuel into a reducing gas mixture comprising CO and H2. The reducing gas mixture is then fed into the NSR catalyst, where it regenerates the NSR adsorbent, reduces the NOx to nitrogen, and optionally periodically desulfates the NSR catalyst. The fuel processor generally includes one or more catalysts, which facilitate reactions such as combustion, partial oxidation, and/or reforming and help consume excess oxygen present in an engine exhaust stream. The methods of the present invention provide for NSR catalyst adsorbent regeneration using pulsed fuel flow. Control strategies are also provided.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: August 1, 2006
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: Ralph Dalla Betta, Joel Cizeron
  • Publication number: 20060021331
    Abstract: Described here are systems and methods for treating fuel injected exhaust streams. In general, the systems comprise a fuel injector, a pre-combustor, and a fuel combustor. The methods described herein include methods for regenerating a NOx trap or a DPF, and methods for generating a substantially uniform fuel air mixture at a fuel combustor inlet, or a substantially uniform temperature at a fuel combustor outlet. The methods of regenerating a NOx trap typically comprise the steps of injecting fuel into an exhaust stream, passing the stream through a pre-combustor, operating the pre-combustor to at least partially combust the injected fuel, reacting the fuel and exhaust stream mixture within a fuel combustor to generate a reducing gas mixture, and introducing the reducing gas mixture into a NOx trap, whereby the NOx trap is regenerated. Similar methods for regenerating a diesel particulate filter are also described. Control strategies are also provided.
    Type: Application
    Filed: August 2, 2004
    Publication date: February 2, 2006
    Inventors: Joel Cizeron, Ralph Dalla Betta
  • Publication number: 20040187483
    Abstract: The invention provides devices and methods for generating H2 and CO in an O2 containing gas stream. The invention also provides devices and methods for removal of NOx from an O2 containing gas stream, particularly the oxygen-rich exhaust stream from a lean-burning engine, such as a diesel engine. The invention includes a fuel processor that efficiently converts added hydrocarbon fuel to a reducing mixture of H2 and CO. The added fuel may be a portion of the onboard fuel on a vehicle. The H2 and CO are incorporated into the exhaust stream and reacted over a selective lean NOx catalyst to convert NOx to N2. thereby providing an efficient means of NOx emission control.
    Type: Application
    Filed: November 17, 2003
    Publication date: September 30, 2004
    Inventors: Ralph A. Dalla Betta, Joel Cizeron, David R. Sheridan
  • Publication number: 20040050037
    Abstract: The present invention provides systems and methods to improve the performance and emission control of internal combustion engines equipped with nitrogen oxides storage-reduction (“NSR”) emission control systems. The system comprises a NSR catalyst, a fuel processor located upstream of the NSR catalyst, and at least one fuel injection port. The fuel processor converts a fuel into a reducing gas mixture comprising CO and H2. The reducing gas mixture is then fed into the NSR catalyst, where it regenerates the NSR adsorbent, reduces the NOx to nitrogen, and optionally periodically desulfates the NSR catalyst. The fuel processor comprises one or more catalysts, which facilitate reactions such as combustion, partial oxidation, and/or reforming and help consume excess oxygen present in an engine exhaust stream. The methods of the present invention provide for NSR catalyst adsorbent regeneration using pulsed fuel flow. Control strategies are also provided.
    Type: Application
    Filed: May 6, 2003
    Publication date: March 18, 2004
    Inventors: Ralph Dalla Betta, Joel Cizeron
  • Publication number: 20030101713
    Abstract: The present invention provides systems and methods to improve the performance and emission control of internal combustion engines equipped with nitrogen oxides storage-reduction (“NSR”) emission control systems. The system comprises a NSR catalyst, a fuel processor located upstream of the NSR catalyst, and at least one fuel injection port. The fuel processor converts a fuel into a reducing gas mixture comprising CO and H2. The reducing gas mixture is then fed into the NSR catalyst, where it regenerates the NSR adsorbent, reduces the NOx to nitrogen, and optionally periodically desulfates the NSR catalyst. The fuel processor comprises one or more catalysts, which facilitate reactions such as combustion, partial oxidation, and/or reforming and help consume excess oxygen present in an engine exhaust stream. The methods of the present invention provide for NSR catalyst adsorbent regeneration. Control strategies are provided to control the system and methods of the invention.
    Type: Application
    Filed: December 3, 2002
    Publication date: June 5, 2003
    Inventors: Ralph Dalla Betta, Joel Cizeron