Patents by Inventor Joel Harrington

Joel Harrington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230038339
    Abstract: A scaffold includes a radiopaque marker connected to a strut. The marker is retained within the strut by a head at one or both ends. The marker is attached to the strut by a process that includes forming a rivet from a radiopaque bead and attaching the rivet to the marker including deforming the rivet to enhance resistance to dislodgement during crimping or balloon expansion. The strut has a thickness of about 100 microns.
    Type: Application
    Filed: September 27, 2022
    Publication date: February 9, 2023
    Inventors: Rommel LUMAUIG, Joel HARRINGTON, Chad ABUNASSAR, David D. HART, Cornel I. CIUREA, Mark A. RITCHIE, Jay A. KING, Jill McCoy
  • Patent number: 11478370
    Abstract: A scaffold includes a radiopaque marker connected to a strut. The marker is retained within the strut by a head at one or both ends. The marker is attached to the strut by a process that includes forming a rivet from a radiopaque bead and attaching the rivet to the marker including deforming the rivet to enhance resistance to dislodgement during crimping or balloon expansion. The strut has a thickness of about 100 microns.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: October 25, 2022
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Rommel Lumauig, Joel Harrington, Chad Abunassar, David D. Hart, Cornel I. Ciurea, Mark A. Ritchie, Jay A. King, Jill McCoy
  • Patent number: 10709589
    Abstract: A method of accelerated aging of bioresorbable polymer scaffolds including exposing the scaffold to water is disclosed. The scaffold is exposed to water at a controlled temperature for a selected aging time. The functional outputs, such as radial strength, expandability, and % recoil obtained from aged scaffolds predict those of real-time aging of the scaffold. The accelerated aging factor, which is the required shelf life divided by the aging time, is significantly higher for poly(L-lactide) scaffolds tested than thermal aging.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: July 14, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Jana Buccola, Joel Harrington, Syed Hossainy, Mary Beth Kossuth, Annie Liu, James Oberhauser, Fuh-Wei Tang
  • Publication number: 20200179145
    Abstract: A scaffold includes a radiopaque marker connected to a strut. The marker is retained within the strut by a head at one or both ends. The marker is attached to the strut by a process that includes forming a rivet from a radiopaque bead and attaching the rivet to the marker including deforming the rivet to enhance resistance to dislodgement during crimping or balloon expansion. The strut has a thickness of about 100 microns.
    Type: Application
    Filed: February 12, 2020
    Publication date: June 11, 2020
    Inventors: Rommel LUMAUIG, Joel HARRINGTON, Chad ABUNASSAR, David D. HART, Cornel I. CIUREA, Mark A. RITCHIE, Jay A. KING, Jill McCOY
  • Patent number: 10610387
    Abstract: A scaffold includes a radiopaque marker connected to a strut. The marker is retained within the strut by a head at one or both ends. The marker is attached to the strut by a process that includes forming a rivet from a radiopaque bead and attaching the rivet to the marker including deforming the rivet to enhance resistance to dislodgement during crimping or balloon expansion. The strut has a thickness of about 100 microns.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: April 7, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Rommel Lumauig, Joel Harrington, Chad Abunassar, David D. Hart, Cornel I. Ciurea, Mark A. Ritchie, Jay A. King, Jill McCoy
  • Patent number: 10525552
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: January 7, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen
  • Patent number: 10278844
    Abstract: Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: May 7, 2019
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Rommel Lumauig, Stephen D. Pacetti, Ni Ding, Joel Harrington, Xiao Ma, James P. Oberhauser, Jill McCoy, Chad J. Abunassar, Senthil Eswaran, Diem Ta
  • Publication number: 20180325707
    Abstract: A method of accelerated aging of bioresorbable polymer scaffolds including exposing the scaffold to water is disclosed. The scaffold is exposed to water at a controlled temperature for a selected aging time. The functional outputs, such as radial strength, expandability, and % recoil obtained from aged scaffolds predict those of real-time aging of the scaffold. The accelerated aging factor, which is the required shelf life divided by the aging time, is significantly higher for poly(L-lactide) scaffolds tested than thermal aging.
    Type: Application
    Filed: May 9, 2017
    Publication date: November 15, 2018
    Inventors: Jana Buccola, Joel Harrington, Syed Hossainy, Mary Beth Kossuth, Annie Liu, James Oberhauser, Fuh-Wei Tang
  • Publication number: 20180272044
    Abstract: A braided polymeric scaffold, made at least in part from a bioresorbable material is deployed on a catheter that uses a push-pull mechanism to deploy the scaffold. A drug coating is disposed on the scaffold. A plurality of scaffold segments on a catheter is also disclosed.
    Type: Application
    Filed: June 1, 2018
    Publication date: September 27, 2018
    Inventors: Syed Faiyaz Ahmed Hossainy, John E. Papp, Joel Harrington
  • Patent number: 10004834
    Abstract: A braided polymeric scaffold, made at least in part from a bioresorbable material is deployed on a catheter that uses a push-pull mechanism to deploy the scaffold. A drug coating is disposed on the scaffold. A plurality of scaffold segments on a catheter is also disclosed.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: June 26, 2018
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Syed Faiyaz Ahmed Hossainy, John E. Papp, Joel Harrington
  • Patent number: 9931787
    Abstract: A polymer scaffold is crimped to a balloon while the polymer material is in a thermodynamically unstable state, or a transient state including crimping shortly after a tube or scaffold processing step that imparts memory to the material, or shortly after rejuvenation of the scaffold.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: April 3, 2018
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Joel Harrington, Jill McCoy
  • Publication number: 20180008438
    Abstract: Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
    Type: Application
    Filed: August 28, 2017
    Publication date: January 11, 2018
    Inventors: Rommel Lumauig, Stephen D. Pacetti, Ni Ding, Joel Harrington, Xiao Ma, James P. Oberhauser, Jill McCoy, Chad J. Abunassar, Senthil Eswaran, Diem Ta
  • Patent number: 9861508
    Abstract: A method of laser machining a polymer construct to form a stent that includes a bioresorbable polymer and an absorber that increases absorption of laser energy during laser machining. The laser cuts the tubing at least in part by a multiphoton absorption mechanism and the polymer and absorber have a very low absorbance or are transparent to light at the laser wavelength.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: January 9, 2018
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Stephen D. Pacetti, Joel Harrington
  • Publication number: 20170333233
    Abstract: A scaffold includes a radiopaque marker connected to a strut. The marker is retained within the strut by a head at one or both ends. The marker is attached to the strut by a process that includes forming a rivet from a radiopaque bead and attaching the rivet to the marker including deforming the rivet to enhance resistance to dislodgement during crimping or balloon expansion. The strut has a thickness of about 100 microns.
    Type: Application
    Filed: June 6, 2017
    Publication date: November 23, 2017
    Inventors: Rommel Lumauig, Joel Harrington, Chad Abunassar, David D. Hart, Cornel I. Ciurea, Mark A. Ritchie, Jay A. King, Jill McCoy
  • Publication number: 20170304949
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Application
    Filed: July 6, 2017
    Publication date: October 26, 2017
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen
  • Patent number: 9795497
    Abstract: Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: October 24, 2017
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Rommel Lumauig, Stephen D. Pacetti, Ni Ding, Joel Harrington, Xiao Ma, James P. Oberhauser, Jill McCoy, Chad J. Abunassar, Senthil Eswaran, Diem Ta
  • Patent number: 9757258
    Abstract: Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: September 12, 2017
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Rommel Lumauig, Stephen D. Pacetti, Ni Ding, Joel Harrington, Xiao Ma, James P. Oberhauser, Jill McCoy, Chad J. Abunassar, Senthil Eswaran, Diem Ta
  • Patent number: 9744625
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: August 29, 2017
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen
  • Patent number: 9700443
    Abstract: A scaffold includes a radiopaque marker connected to a strut. The marker is retained within the strut by a head at one or both ends. The marker is attached to the strut by a process that includes forming a rivet from a radiopaque bead and attaching the rivet to the marker including deforming the rivet to enhance resistance to dislodgement during crimping or balloon expansion. The strut has a thickness of about 100 microns.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: July 11, 2017
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Rommel Lumauig, Joel Harrington, Chad Abunassar, David D. Hart, Cornel I. Ciurea, Mark A. Ritchie, Jay A. King, Jill McCoy
  • Publication number: 20170112645
    Abstract: A method of laser machining a polymer construct to form a stent that includes a bioresorbable polymer and an absorber that increases absorption of laser energy during laser machining. The laser cuts the tubing at least in part by a multiphoton absorption mechanism and the polymer and absorber have a very low absorbance or are transparent to light at the laser wavelength.
    Type: Application
    Filed: January 4, 2017
    Publication date: April 27, 2017
    Inventors: Stephen D. Pacetti, Joel Harrington