Patents by Inventor Joel M. Friedman

Joel M. Friedman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11532087
    Abstract: The disclosure relates, in part, to computer-based visualization of stent position within a blood vessel. A stent can be visualized using intravascular data and subsequently displayed as stent struts or portions of a stent as a part of a one or more graphic user interface(s) (GUI). In one embodiment, the method includes steps to distinguish stented region(s) from background noise using an amalgamation of angular stent strut information for a given neighborhood of frames. The GUI can include views of a blood vessel generated using distance measurements and demarcating the actual stented region(s), which provides visualization of the stented region. The disclosure also relates to display of intravascular diagnostic information such as indicators. An indicator can be generated and displayed with images generated using an intravascular data collection system. The indicators can include one or more viewable graphical elements suitable for indicating diagnostic information such as stent information.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: December 20, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Sonal Ambwani, Christopher E. Griffin, James G. Peterson, Satish Kaveti, Joel M. Friedman
  • Patent number: 11484493
    Abstract: A transdermal formulation for the delivery of a nitric oxide booster or nitric oxide precursor to a subject is provided. The formulation can be applied to the treatment of various diseases or conditions by enhancing systemic level of nitric oxide.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: November 1, 2022
    Assignee: Albert Einstein College of Medicine
    Inventor: Joel M. Friedman
  • Publication number: 20220280259
    Abstract: Aspects of the disclosure relate to the identification of when a blood vessel has been sufficiently cleared of blood so as to capture intravascular images of the vessel wall. The disclosed systems and methods allow for the identification of an initial and a final blood clearing based on the identification of edges within scanlines of a plurality of image frames. The edges of a plurality of scanlines may be analyzed to determine an average edge offset for each image frame, and the average edge offsets for a plurality of image frames may be averaged over various time-windows, so as to determine when the initial and final blood clearing events have occurred. Once a final blood clearing event has been identified, the disclosed system may automatically initiate a catheter pullback procedure, so as to capture intravascular images over a length of the vessel that has been sufficiently cleared of blood.
    Type: Application
    Filed: March 2, 2022
    Publication date: September 8, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Christopher E. Griffin, Joel M. Friedman, Ashley Netravali, Lingfa Yang
  • Patent number: 11435233
    Abstract: In part, the invention relates to systems and methods of calibrating a plurality of frames generated with respect to a blood vessel as a result of a pullback of an intravascular imaging probe being pullback through the vessel. A calibration feature disposed in the frames that changes between a subset of the frames can be used to perform calibration. Calibration can be performed post-pullback. Various filters and image processing techniques can be used to identify one or more feature in the frames including, without limitation, a calibration feature, a guidewire, a side branch, a stent strut, a lumen of the blood vessel, and other features. The feature can be displayed using a graphic user interface.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: September 6, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Joel M. Friedman, Amr Elbasiony
  • Publication number: 20220142913
    Abstract: A transdermal formulation for the delivery of a nitric oxide booster or nitric oxide precursor to a subject is provided. The formulation can be applied to the treatment of various diseases or conditions by enhancing systemic level of nitric oxide.
    Type: Application
    Filed: January 26, 2022
    Publication date: May 12, 2022
    Applicant: Albert Einstein College of Medicine
    Inventor: Joel M. Friedman
  • Publication number: 20220142947
    Abstract: A transdermal formulation for the delivery of a nitric oxide booster or nitric oxide precursor to a subject is provided. The formulation can be applied to the treatment of various diseases or conditions by enhancing systemic level of nitric oxide.
    Type: Application
    Filed: December 30, 2021
    Publication date: May 12, 2022
    Applicant: Albert Einstein College of Medicine
    Inventor: Joel M. Friedman
  • Publication number: 20220095933
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 21, 2021
    Publication date: March 31, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20220095934
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 22, 2021
    Publication date: March 31, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20220095932
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 21, 2021
    Publication date: March 31, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20220087544
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 21, 2021
    Publication date: March 24, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20220039667
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20220039668
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20210217175
    Abstract: The disclosure relates, in part, to computer-based visualization of stent position within a blood vessel. A stent can be visualized using intravascular data and subsequently displayed as stent struts or portions of a stent as a part of a one or more graphic user interface(s) (GUI). In one embodiment, the method includes steps to distinguish stented region(s) from background noise using an amalgamation of angular stent strut information for a given neighborhood of frames. The GUI can include views of a blood vessel generated using distance measurements and demarcating the actual stented region(s), which provides visualization of the stented region. The disclosure also relates to display of intravascular diagnostic information such as indicators. An indicator can be generated and displayed with images generated using an intravascular data collection system. The indicators can include one or more viewable graphical elements suitable for indicating diagnostic information such as stent information.
    Type: Application
    Filed: January 22, 2021
    Publication date: July 15, 2021
    Applicant: LightLab Imaging, Inc.
    Inventors: Sonal Ambwani, Christopher E. Griffin, James G. Peterson, Satish Kaveti, Joel M. Friedman
  • Patent number: 10902599
    Abstract: The disclosure relates, in part, to computer-based visualization of stent position within a blood vessel. A stent can be visualized using intravascular data and subsequently displayed as stent struts or portions of a stent as a part of a one or more graphic user interface(s) (GUI). In one embodiment, the method includes steps to distinguish stented region(s) from background noise using an amalgamation of angular stent strut information for a given neighborhood of frames. The GUI can include views of a blood vessel generated using distance measurements and demarcating the actual stented region(s), which provides visualization of the stented region. The disclosure also relates to display of intravascular diagnostic information such as indicators. An indicator can be generated and displayed with images generated using an intravascular data collection system. The indicators can include one or more viewable graphical elements suitable for indicating diagnostic information such as stent information.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: January 26, 2021
    Assignee: LightLab Imaging, Inc.
    Inventors: Sonal Ambwani, Christopher E. Griffin, James G. Peterson, Satish Kaveti, Joel M. Friedman
  • Publication number: 20200355557
    Abstract: In part, the invention relates to systems and methods of calibrating a plurality of frames generated with respect to a blood vessel as a result of a pullback of an intravascular imaging probe being pullback through the vessel. A calibration feature disposed in the frames that changes between a subset of the frames can be used to perform calibration. Calibration can be performed post-pullback. Various filters and image processing techniques can be used to identify one or more feature in the frames including, without limitation, a calibration feature, a guidewire, a side branch, a stent strut, a lumen of the blood vessel, and other features. The feature can be displayed using a graphic user interface.
    Type: Application
    Filed: January 15, 2020
    Publication date: November 12, 2020
    Applicant: LightLab Imaging, Inc.
    Inventors: Joel M. Friedman, Amr Elbasiony
  • Patent number: 10551251
    Abstract: In part, the invention relates to systems and methods of calibrating a plurality of frames generated with respect to a blood vessel as a result of a pullback of an intravascular imaging probe being pullback through the vessel. A calibration feature disposed in the frames that changes between a subset of the frames can be used to perform calibration. Calibration can be performed post-pullback. Various filters and image processing techniques can be used to identify one or more feature in the frames including, without limitation, a calibration feature, a guidewire, a side branch, a stent strut, a lumen of the blood vessel, and other features. The feature can be displayed using a graphic user interface.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: February 4, 2020
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Joel M. Friedman, Amr Elbasiony
  • Publication number: 20190380594
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: August 23, 2019
    Publication date: December 19, 2019
    Applicant: LIGHTLAB IMAGING, INC.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20190220980
    Abstract: The disclosure relates, in part, to computer-based visualization of stent position within a blood vessel. A stent can be visualized using intravascular data and subsequently displayed as stent struts or portions of a stent as a part of a one or more graphic user interface(s) (GUI). In one embodiment, the method includes steps to distinguish stented region(s) from background noise using an amalgamation of angular stent strut information for a given neighborhood of frames. The GUI can include views of a blood vessel generated using distance measurements and demarcating the actual stented region(s), which provides visualization of the stented region. The disclosure also relates to display of intravascular diagnostic information such as indicators. An indicator can be generated and displayed with images generated using an intravascular data collection system. The indicators can include one or more viewable graphical elements suitable for indicating diagnostic information such as stent information.
    Type: Application
    Filed: October 22, 2018
    Publication date: July 18, 2019
    Applicant: LightLab Imaging, Inc.
    Inventors: Sonal Ambwani, Christopher E. Griffin, James G. Peterson, Satish Kaveti, Joel M. Friedman
  • Publication number: 20180344174
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimate blood flow rate, a number of clinically significant physiological parameters are then determine and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: March 12, 2013
    Publication date: December 6, 2018
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Patent number: 10109058
    Abstract: The disclosure relates, in part, to computer-based visualization of stent position within a blood vessel. A stent can be visualized using intravascular data and subsequently displayed as stent struts or portions of a stent as a part of a one or more graphic user interface(s) (GUI). In one embodiment, the method includes steps to distinguish stented region(s) from background noise using an amalgamation of angular stent strut information for a given neighborhood of frames. The GUI can include views of a blood vessel generated using distance measurements and demarcating the actual stented region(s), which provides visualization of the stented region. The disclosure also relates to display of intravascular diagnostic information such as indicators. An indicator can be generated and displayed with images generated using an intravascular data collection system. The indicators can include one or more viewable graphical elements suitable for indicating diagnostic information such as stent information.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: October 23, 2018
    Assignee: LightLab Imaging, Inc.
    Inventors: Sonal Ambwani, Christopher E. Griffin, James G. Peterson, Satish Kaveti, Joel M. Friedman