Patents by Inventor Joelle Nina Pelletier

Joelle Nina Pelletier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7160691
    Abstract: The present invention describes a method for detecting biomolecular interactions said method comprising: (a) selecting an appropriate reporter molecule selected from the group consisting of a protein, a fluorescent protein, a luminescent protein and a phosphorescent protein; (b) effecting fragmentation of said reporter molecule such that said fragmentation results in reversible loss of reporter function; (c) fusing or attaching fragments of said reporter molecule separately to other molecules; followed by (d) reassociation of said reporter fragments through interactions of the molecules that are fused to said fragments; and (e) detecting said biomolecular interactions by reconstitution of activity of the reporter molecule.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: January 9, 2007
    Assignee: Odyssey Thera Inc.
    Inventors: Stephen William Watson Michnick, Joelle Nina Pelletier, Ingrid Remy
  • Patent number: 6929916
    Abstract: The present invention describes a method for detecting biomolecular interactions said method comprising: (a) selecting an appropriate reporter molecule selected from the group consisting of a protein, a fluorescent protein, a luminescent protein and a phosphorescent protein; (b) effecting fragmentation of said reporter molecule such that said fragmentation results in reversible loss of reporter function; (c) fusing or attaching fragments of said reporter molecule separately to other molecules; followed by (d) reassociation of said reporter fragments through interactions of the molecules that are fused to said fragments; and (e) detecting said biomolecular interactions by reconstitution of activity of the reporter molecule with the proviso that said protein is not ubiquitin.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: August 16, 2005
    Assignee: Odyssey Thera Inc.
    Inventors: Stephen William Watson Michnick, Joelle Nina Pelletier, Ingrid Remy
  • Publication number: 20040038298
    Abstract: We describe a strategy for designing and implementing protein-fragment complementation assays (PCAs) to detect biomolecular interactions in vivo and in vitro. The design, implementation and broad applications of this strategy are illustrated with a large number of enzymes with particular detail provided for the example of murine dihydrofolate reductase (DHFR). Fusion peptides consisting of N- and C-terminal fragments of murine DHFR fused to GCN4 leucine zipper sequences were coexpressed in Escherichia coli grown in minimal medium, where the endogenous DHFR activity was inhibited with trimethoprim. Coexpression of the complementary fusion products restored colony formation. Survival only occurred when both DHFR fragments were present and contained leucine-zipper forming sequences, demonstrating that reconstitution of enzyme activity requires assistance of leucine zipper formation. DHFR fragment-interface point mutants of increasing severity (Ile to Val, Ala and Gly) resulted in a sequential increase in E.
    Type: Application
    Filed: January 29, 2003
    Publication date: February 26, 2004
    Applicant: Odyssey Pharmaceuticals, Inc.
    Inventors: Stephen William Waston Michnick, Joelle Nina Pelletier, Ingrid Remy
  • Publication number: 20030049688
    Abstract: We describe a strategy for designing and implementing protein-fragment complementation assays (PCAs) to detect biomolecular interactions in vivo and in vitro. The design, implementation and broad applications of this strategy are illustrated with a large number of enzymes with particular detail provided for the example of murine dihydrofolate reductase (DHFR). Fusion peptides consisting of N- and C-terminal fragments of murine DHFR fused to GCN4 leucine zipper sequences were coexpressed in Escherichia coli grown in minimal medium, where the endogenous DHFR activity was inhibited with trimethoprim. Coexpression of the complementary fusion products restored colony formation. Survival only occurred when both DHFR fragments were present and contained leucine-zipper forming sequences, demonstrating that reconstitution of enzyme activity requires assistance of leucine zipper formation. DHFR fragment-interface point mutants of increasing severity (Ile to Val, Ala and Gly) resulted in a sequential increase in E.
    Type: Application
    Filed: May 24, 2002
    Publication date: March 13, 2003
    Applicant: Odyssey Pharmaceuticals, Inc.
    Inventors: Stephen William Watson Michnick, Joelle Nina Pelletier, Ingrid Remy
  • Patent number: 6428951
    Abstract: We describe a strategy for designing and implementing protein-fragment complementation assays (PCAs) to detect biomolecular interactions in vivo and in vitro. The design, implementation and broad applications of this strategy are illustrated with a large number of enzymes with particular detail provided for the example of murine dihydrofolate reductase (DHFR). Fusion peptides consisting of N- and C-terminal fragments of murine DHFR fused to-GCN4 leucine zipper sequences were coexpressed in Escherichia coli grown in minimal medium, where the endogenous DHFR activity was inhibited with trimethoprim. Coexpression of the complementary fusion products restored colony formation. Survival only occurred when both DHFR fragments were present and contained leucine-zipper forming sequences, demonstrating that reconstitution of enzyme activity requires assistance of leucine zipper formation. DHFR fragment-interface point mutants of increasing severity (lie to Val, Ala and Gly) resulted in a sequential increase in E.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: August 6, 2002
    Assignee: Odyssey Pharmaceuticals, Inc.
    Inventors: Stephen William Watson Michnick, Joelle Nina Pelletier, Ingrid Remy
  • Patent number: 6270964
    Abstract: We describe a strategy for designing and implementing protein-fragment complementation assays (PCAs) to detect biomolecular interactions in vivo and in vitro. The design, implementation and broad applications of this strategy are illustrated with a large number of enzymes with particular detail provided for the example of murine dihydrofolate reductase (DHFR). Fusion peptides consisting of N- and C-terminal fragments of murine DHFR fused to GCN4 leucine zipper sequences were coexpressed in Escherichia coli grown in minimal medium, where the endogenous DHFR activity was inhibited with trimethoprim. Coexpression of the complementary fusion products restored colony formation. Survival only occurred when both DHFR fragments were present and contained leucine-zipper forming sequences, demonstrating that reconstitution of enzyme activity requires assistance of leucine zipper formation. DHFR fragment-interface point mutants of increasing severity (lle to Val, Ala and Gly) resulted in a sequential increase in E.
    Type: Grant
    Filed: February 2, 1998
    Date of Patent: August 7, 2001
    Assignee: Odyssey Pharmaceuticals Inc.
    Inventors: Stephen William Watson Michnick, Joelle Nina Pelletier, Ingrid Remy