Patents by Inventor Johan Furuskog

Johan Furuskog has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10771998
    Abstract: Embodiments of systems and methods for flexible Channel State Information (CSI) feedback in a cellular communications network are disclosed. In some embodiments, a base station configures a wireless device with a set of CSI-RS resources, dynamically configures a CSI-RS resource from the set of CSI-RS resources for measurement, and receives a CSI report from the wireless device determined from the CSI-RS resource dynamically configured for measurement. In this manner, the base station is enabled to dynamically configure and re-configure the CSI-RS resource(s) for measurement by the wireless device, which in turn provides flexible CSI feedback that is particularly well-suited for embodiments in which the base station transmits beamformed CSI-RS.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: September 8, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Mattias Frenne, Johan Furuskog, Robert Mark Harrison, George Jöngren
  • Patent number: 10771960
    Abstract: Embodiments herein relate to a method performed by a radio network node (12) for handling transmission of data from a wireless device (10) in a wireless communication network (1). The radio network node (12) determines a delay value for a transmission of data from the wireless device (10) based on a transmission type of data from the wireless device (10) or a capability of the wireless device (10). The capability is related to a processing time for processing received data from the radio network node (12), or for processing data for transmission to the radio network node. The radio network node further transmits an indication, to the wireless device (10), which indication indicates the determined delay value.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: September 8, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Mattias Frenne, Håkan Andersson, Johan Furuskog, Niclas Wiberg, Qiang Zhang
  • Patent number: 10750525
    Abstract: The present disclosure pertains to a method for operating a wireless communication network, wherein a first member of the network transmits a scheduling message to a secondary member of the network and the secondary member receives the scheduling message. The secondary member schedules sounding signal transmissions and/or a corresponding schedule based on the scheduling message, wherein the scheduling message and/or the sounding signal schedule refers to a schedule for sounding signals based on a status of beam forming performed in the network and/or wherein the sounding signal schedule and/or the schedule message refers to a compact schedule of sounding signals. There are also disclosed associated devices and methods.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: August 18, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Håkan Andersson, Mattias Frenne, Johan Furuskog, Stefan Parkvall, Henrik Sahlin, Qiang Zhang
  • Patent number: 10743363
    Abstract: A wireless device (120) and a method for initiating a procedure for re-establishing a capability of communication in a wireless communications network (100). The wireless device (120) and a radio network node (110) operate in the wireless communications network (100). The wireless device (120) receives, from the radio network node (110), a first signal that is specific for the wireless device (120). In response to that a certain time has elapsed since a latest receipt of the first signal, the wireless device (120) initiates a procedure for re-establishing a capability of communication between the wireless device (120) and the radio network node (110) using a beam pair.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: August 11, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Niclas Wiberg, Håkan Andersson, Mattias Frenne, Johan Furuskog, Johan Kåredal, John Skördeman, Tomas Sundin, Qiang Zhang
  • Patent number: 10728924
    Abstract: A guard period for switching between uplink and downlink subframes is created by shortening an uplink subframe, i.e., by not transmitting during one or more symbol intervals at the beginning of the subframe interval. A grant message includes signaling indicating when a shortened subframe should be transmitted. An example method is implemented in a first wireless node configured to transmit data in transmit subframes occurring at defined subframe intervals and having a predetermined number of symbol intervals. This example method includes determining (1620) that a transmit subframe is to be shortened, relative to the predetermined number of symbol intervals and, in response to this determination, shortening (1630) transmission of the transmit subframe by not transmitting during a beginning portion of the subframe interval for the transmit subframe and transmitting during the remainder of the subframe interval.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: July 28, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Henrik Sahlin, Johan Furuskog, Stefan Parkvall, Qiang Zhang
  • Publication number: 20200213039
    Abstract: Embodiments include methods for a wireless device operating in a wireless communication network. Such methods include receiving from the wireless communication network, during a first transmission-time interval (TTI), an explicit request for automatic repeat-request (ARQ) feedback from the wireless device. The request can include an indication of one of the following: a range of ARQ process numbers for which the ARQ feedback is requested, or a range of TTIs, indicating that the wireless device is to provide ARQ feedback for all ARQ processes active during the indicated range of TTIs. Such methods also include transmitting to the wireless communication network, during a second TTI after the first TTI, ARQ feedback information for the ARQ processes indicated in the request. Other embodiments include complementary methods performed by a network node, as well as wireless devices and network nodes configured to perform such methods.
    Type: Application
    Filed: March 10, 2020
    Publication date: July 2, 2020
    Inventors: Andreas Bergström, Håkan Andersson, Johan Furuskog, Niclas Wiberg, Qiang Zhang
  • Patent number: 10666346
    Abstract: Embodiments herein relate to a method performed by a wireless device (10) for managing beam-formed communication in a wireless communication network (1), wherein the wireless device (10) is configured to handle separate directional device beams at the wireless device (10). The wireless device (10) forms an active set for a first device beam out of the separate directional device beams of the wireless device by selecting one or more first network beams out of a plurality of separate directional network beams of the wireless communication network (1). The one or more first network beams are selected based on received signal strength or quality, and the active set is to be used for transmission or reception of data. The wireless device selects a first network beam in the active set as a preferred network beam for transmission or reception of data.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: May 26, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Andreas Bergström, Håkan Andersson, Johan Furuskog, Tomas Sundin, Niclas Wiberg, Qiang Zhang
  • Patent number: 10652874
    Abstract: A method in a user equipment (121) for determining a transport block size is provided. The transport block size is used by the user equipment (121) in receiving downlink data transmissions from a network node (110) on an enhanced Control Channel, eCCH. The user equipment (121) and the network node (110) are comprised in a telecommunications system (100). The user equipment (121) has access to a table or predetermined transport block sizes. The user equipment (121) may calculate an indicator NPRB based on the total number of PRBs allocated to the downlink data transmission NPRB, and based on an PRB offset value OPRB or a PRB adjustment factor APRB. Then, the user equipment (121) may determine the transport block size from the table of predetermined transport block sizes based on at least the calculated indicator NPRB. A user equipment, a method in network node and a network node are also provided.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: May 12, 2020
    Assignee: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventors: Daniel Larsson, Jung-Fu Cheng, Mattias Frenne, Johan Furuskog, Havish Koorapaty
  • Patent number: 10638253
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 28, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10630428
    Abstract: Techniques are disclosed whereby a signal is transmitted from a wireless network to a wireless device, requesting automatic repeat-request, ARQ, feedback for certain indicated ARQ processes. This asynchronous approach addresses a problem with irregular ARQ feedback for dynamic time-division-duplexing, and also allows for relaxed processing-time constraints in the wireless device. An example method, in a wireless device, comprises receiving (610) from a wireless communication network, in a first transmission-time interval, a request for ARQ feedback, the request indicating one or more ARQ processes. The example method further comprises transmitting (620) to the wireless communication network, in a second transmission-time interval, ARQ feedback information for each of the one or more indicated ARQ processes.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: April 21, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Andreas Bergström, Håkan Andersson, Johan Furuskog, Niclas Wiberg, Qiang Zhang
  • Patent number: 10630410
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 21, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200120482
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali ASHRAF, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik BERG, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali el Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Niklas Johansson, Martin Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landstrom, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10624087
    Abstract: A radio-network node handling a data transmission to a wireless device transmits data over a number of subframes to the wireless device, and a respective control part, associated with the data of each respective subframe, the respective control part comprising a feedback index indicating a transmission time of a feedback indication. The radio-network node receives from the wireless device the feedback indication in the feedback message common for the subframes of the data transmission according to the control parts of the transmitted subframes. The feedback indication indicates feedback for each subframe of the data transmission received and the number of NACKed subframes out of the number of subframes of the data transmission. The radio-network node receives the feedback message and then decides whether or not to retransmit any of the subframes based on the feedback indication therein.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: April 14, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Niclas Wiberg, Håkan Andersson, Andreas Bergström, Mattias Frenne, Johan Furuskog, Martin Hessler, Qiang Zhang
  • Patent number: 10624080
    Abstract: The set of resource aggregation levels available for forming an enhanced control channel message may vary from one subframe to another, based on the level of puncturing in the transmitted subframes. An example method begins with determining members of a set of aggregation levels usable to aggregate the non-overlapping subsets of resource elements for transmitting downlink control information. This determining is based on a puncturing level to be used for the transmission of the downlink control information. Downlink control information for the given subframe is mapped to one or more non-overlapping subsets of resource elements in the at least one block of time-frequency resources, according to an aggregation level selected from the determined set, and then transmitted, in the one or more non-overlapping subsets. This method may be repeated for each of several subframes, where the puncturing may differ from one subframe to another.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: April 14, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Mattias Frenne, Jung-Fu Cheng, Johan Furuskog, Havish Koorapaty, Daniel Larsson
  • Publication number: 20200112852
    Abstract: Embodiments herein relate to a method performed by a radio network node for handling transmission of data from a wireless device in a wireless communication network. The radio network node determines a delay value for a transmission of data from the wireless device based on a transmission type of data from the wireless device or a capability of the wireless device. The capability is related to a processing time for processing received data from the radio network node, or for processing data for transmission to the radio network node. The radio network node further transmits an indication, to the wireless device, which indication indicates the determined delay value.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 9, 2020
    Inventors: Mattias Frenne, Håkan Andersson, Johan Furuskog, Niclas Wiberg, Qiang Zhang
  • Publication number: 20200100281
    Abstract: Embodiments herein relate to method performed by a radio-network node for handling a data transmission, from a wireless device to the radio-network node, in a wireless communication network. The radio-network node schedules one or more resources for carrying an uplink data transmission from the wireless device over a channel, and for carrying a feedback transmission, of a downlink data transmission from the radio-network node, over the same channel. The radio-network node transmits a control message to the wireless device, which control message indicates the one or more resources scheduled for carrying the uplink data transmission and the feedback transmission over the same channel.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 26, 2020
    Inventors: Håkan Andersson, Andreas Bergström, Mattias Frenne, Johan Furuskog, Martin Hessler, Niclas Wiberg, Qiang Zhang
  • Publication number: 20200084820
    Abstract: A wireless device (120) and a method for initiating a procedure for re-establishing a capability of communication in a wireless communications network (100). The wireless device (120) and a radio network node (110) operate in the wireless communications network (100). The wireless device (120) receives, from the radio network node (110), a first signal that is specific for the wireless device (120). In response to that a certain time has elapsed since a latest receipt of the first signal, the wireless device (120) initiates a procedure for re-establishing a capability of communication between the wireless device (120) and the radio network node (110) using a beam pair.
    Type: Application
    Filed: November 30, 2017
    Publication date: March 12, 2020
    Inventors: Niclas Wiberg, Hakan Anderson, Mattias Frenne, Johan Furuskog, Johan Karedal, John Skordeman, Tomas Sundin
  • Patent number: 10588145
    Abstract: A guard period for switching between uplink and downlink subframes is created by shortening an uplink subframe, i.e., by not transmitting during one or more symbol intervals at the beginning of the subframe interval. A grant message includes signaling indicating when a shortened subframe should be transmitted. An example method is implemented in a first wireless node configured to transmit data in transmit subframes occurring at defined subframe intervals and having a predetermined number of symbol intervals. This example method includes determining (1620) that a transmit subframe is to be shortened, relative to the predetermined number of symbol intervals and, in response to this determination, shortening (1630) transmission of the transmit subframe by not transmitting during a beginning portion of the subframe interval for the transmit subframe and transmitting during the remainder of the subframe interval.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: March 10, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Henrik Sahlin, Johan Furuskog, Stefan Parkvall, Qiang Zhang
  • Publication number: 20200028745
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Application
    Filed: May 16, 2019
    Publication date: January 23, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10536934
    Abstract: Techniques for supporting both localized and frequency-distributed control channel messages in the same enhanced control channel region are disclosed. An example method begins with receiving (2010) a downlink signal comprising an enhanced control region consisting of at least two sets of physical resource block (PRB) pairs. The method continues with the forming (2020) of one or more distributed enhanced control-channel elements (eCCEs) from a first set of PRB pairs by aggregating physical layer building blocks from multiple PRB pairs to form each distributed eCCE. One or more localized eCCEs are formed (2030) from a second set of PRB pairs by aggregating physical layer building blocks such that each of the localized eCCEs is formed from physical layer building blocks from within a single PRB pair of the second set. Control channel message candidates are formed (2050) from the distributed eCCEs and localized eCCEs, respectively, and decoded (2060).
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: January 14, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Mattias Frenne, Johan Furuskog, Havish Koorapaty, Daniel Larsson