Patents by Inventor Johannes Classen

Johannes Classen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9650240
    Abstract: Measures are provided for improving and simplifying metallic bonding processes which enable a reliable initiation of the bonding process and thus contribute to a uniform bonding. The present method provides a further option for using bonding layers. The method in the case of which the two semiconductor elements are bonded to one another via a bond of at least one metallic starting layer and at least one further starting layer provides that the two starting layers are structured in such a way that the layer areas which are assigned to one another have differently sized areal extents. Moreover, the layer thicknesses of the two starting layers should be selected in such a way that the layer areas which are assigned to one another meet the material ratio necessary for the bonding process.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: May 16, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Mirko Hattass, Heiko Stahl, Jochen Reinmuth, Julian Gonska, Johannes Classen
  • Patent number: 9651377
    Abstract: A yaw rate sensor includes: a first sensor structure having a first oscillating mass and configured to detect a first yaw rate around a first axis of rotation; a second sensor structure having a second oscillating mass and configured to detect second and third yaw rates around second and third axes of rotation, respectively; and a drive structure coupled to the first and second oscillating masses. The first oscillating mass is drivable into a first drive oscillation along a first oscillation direction, and the second oscillating mass is drivable into a second drive oscillation along a second oscillation direction different from the first oscillation direction. The first axis of rotation is perpendicular to the first oscillation direction, and the second and third axes of rotation are perpendicular to the second oscillation direction.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: May 16, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Thorsten Balslink, Hendrik Specht, Johannes Classen
  • Publication number: 20170096331
    Abstract: Measures are described which contribute simply and reliably to the mechanical decoupling of a MEMS functional element from the structure of a MEMS element. The MEMS element includes at least one deflectable functional element, which is implemented in a layered structure on a MEMS substrate, so that a space exists between the layered structure and the MEMS substrate, at least in the area of the functional element. According to the invention, a stress decoupling structure is formed in the MEMS substrate in the form of a blind hole-like trench structure, which is open to the space between the layered structure and the MEMS substrate and extends into the MEMS substrate to only a predefined depth, so that the rear side of the MEMS substrate is closed, at least in the area of the trench structure.
    Type: Application
    Filed: May 29, 2015
    Publication date: April 6, 2017
    Inventors: Johannes Classen, Jochen Reinmuth, Mirko Hattass, Ralf Reichenbach, Antoine Puygranier
  • Patent number: 9606141
    Abstract: A micromechanical sensor device, having a first unhoused sensor unit, and at least one second unhoused sensor unit, the sensor units being functionally connected to one another, the sensor units being essentially vertically configured one over the other so that a sensor unit having a larger footprint completely covers a sensor unit having a smaller footprint.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: March 28, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jens Frey, Arnd Kaelberer, Jochen Reinmuth, Johannes Classen
  • Publication number: 20170081180
    Abstract: A method for manufacturing a micromechanical component, including: providing a MEMS wafer; structuring the MEMS wafer proceeding from a surface of a second substrate layer of the MEMS wafer, at least one electrically conducting connection being formed between a first substrate layer and the second substrate layer of the MEMS wafer; providing a cap wafer; joining the MEMS wafer to the cap wafer; structuring the MEMS wafer proceeding from a surface of the first substrate layer of the MEMS wafer; providing an ASIC wafer; and joining the ASIC wafer to the joint of the MEMS wafer and the cap wafer.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 23, 2017
    Inventor: Johannes Classen
  • Publication number: 20170081177
    Abstract: An interposer is provided which is made up of a flat carrier substrate including at least one front wiring plane, in which front terminal pads are formed for mounting a component on the interposer, including at least one rear wiring plane, in which rear terminal pads are formed for mounting on a component carrier, the front terminal pads and the rear terminal pads being arranged offset from each other; and including vias for electrical connection of the at least one front wiring plane and the at least one rear wiring plane. The carrier substrate includes at least one edge section and at least one center section, which are at least largely mechanically decoupled via a stress-decoupling structure. The front terminal pads are arranged exclusively on the center section for mounting the component, while the rear terminal pads are arranged exclusively on the edge section for mounting on a component carrier.
    Type: Application
    Filed: May 29, 2015
    Publication date: March 23, 2017
    Applicant: Robert Bosch GmbH
    Inventors: Reinhard Neul, Johannes Classen, Torsten Kramer, Jochen Reinmuth, Mirko Hattass, Lars Tebje, Daniel Christoph Meisel, Ralf Reichenbach, Friedjof Heuck, Antoine Puygranier
  • Patent number: 9593948
    Abstract: A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: March 14, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Reinhard Neul, Johannes Classen, Torsten Ohms, Burkhard Kuhlmann, Axel Franke, Oliver Kohn, Daniel Christoph Meisel, Joerg Hauer, Udo-Martin Gomez, Kersten Kehr
  • Patent number: 9593949
    Abstract: A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: March 14, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Reinhard Neul, Johannes Classen, Torsten Ohms, Burkhard Kuhlmann, Axel Franke, Oliver Kohn, Daniel Christoph Meisel, Joerg Hauer, Udo-Martin Gomez, Kersten Kehr
  • Publication number: 20170059852
    Abstract: A pivot apparatus, in particular a pivot apparatus for a micromirror, a fixed base frame being connected, directly or indirectly via an intermediate frame, to a pivotable carrier element. Spring elements having flexural springs are respectively disposed between the base frame and carrier element, base frame and intermediate frame, and intermediate frame and carrier element. The use of flexural springs enables good thermal coupling between the individual components, and an increase in robustness. The pivot apparatus can be embodied in particular as a microelectromechanical system.
    Type: Application
    Filed: August 19, 2016
    Publication date: March 2, 2017
    Inventors: Johannes Classen, Ralf Noltemeyer, Arnd Kaelberer, Peter Sudy, Hans Artmann
  • Publication number: 20170052207
    Abstract: A micromechanical structure for an acceleration sensor, including a seismic mass that is constituted definedly asymmetrically with reference to the rotational Z axis of the structure of the acceleration sensor, spring elements that are fastened on the seismic mass and on at least one fastening element, a rotational motion of the seismic mass being generatable by way of the spring elements substantially only upon an acceleration in a defined sensing direction within a plane constituted substantially orthogonally to the rotational Z axis.
    Type: Application
    Filed: December 22, 2014
    Publication date: February 23, 2017
    Inventor: Johannes CLASSEN
  • Publication number: 20160341616
    Abstract: A micromechanical pressure sensor device and a corresponding manufacturing method. The micromechanical pressure sensor device includes an ASIC wafer, a rewiring system, formed on the front side, which includes a plurality of strip conductor levels and insulating layers situated in between, a structured insulating layer formed above an uppermost strip conductor level, a micromechanical functional layer formed on the insulating layer and which includes a diaphragm area, which may be acted on by pressure, above a recess in the insulating layer as a first pressure detection electrode, and a second pressure detection electrode on the uppermost strip conductor level, formed in the recess at a distance from the diaphragm area and is electrically insulated from the diaphragm area. The diaphragm area is electrically connected to the uppermost strip conductor level by one or multiple first contact plugs which are led through the diaphragm area and through the insulating layer.
    Type: Application
    Filed: November 17, 2014
    Publication date: November 24, 2016
    Inventor: Johannes Classen
  • Publication number: 20160327446
    Abstract: A micromechanical pressure sensor device and a corresponding manufacturing method. The micromechanical pressure sensor device includes an ASIC wafer having a front side and a rear side, and a rewiring system, formed on the front side of the ASIC wafer, which includes a plurality of stacked strip conductor levels and insulation layers. The pressure sensor device also includes a MEMS wafer having a front side and a rear side, a first micromechanical functional layer which is formed above the front side of the MEMS wafer, and a second micromechanical functional layer which is formed above the first micromechanical functional layer.
    Type: Application
    Filed: November 17, 2014
    Publication date: November 10, 2016
    Inventors: Johannes Classen, Jochen Reinmuth, Arnd Kaelberer
  • Patent number: 9434606
    Abstract: A micromechanical inertial sensor includes an ASIC element having a processed front side, an MEMS element having a micromechanical sensor structure, and a cap wafer mounted above the micromechanical sensor structure, which sensor structure includes a seismic mass and extends over the entire thickness of the MEMS substrate. The MEMS element is mounted on the processed front side of the ASIC element above a standoff structure and is electrically connected to the ASIC element via through-contacts in the MEMS substrate and in adjacent supports of the standoff structure. A blind hole is formed in the MEMS substrate in the area of the seismic mass, which blind hole is filled with the same electrically conductive material as the through-contacts, the conductive material having a greater density than the MEMS substrate.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: September 6, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Mirko Hattass, Daniel Christoph Meisel
  • Publication number: 20160109236
    Abstract: A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 21, 2016
    Inventors: Reinhard Neul, Johannes Classen, Torsten Ohms, Burkhard Kuhlmann, Axel Franke, Oliver Kohn, Daniel Christoph Meisel, Joerg Hauer, Udo-Martin Gomez, Kersten Kehr
  • Publication number: 20160084865
    Abstract: A micromechanical device having a main plane of extension includes a sensor wafer, an evaluation wafer, and an intermediate wafer situated between the sensor wafer and the evaluation wafer, the evaluation wafer having at least one application-specific integrated circuit. The sensor wafer and/or the intermediate wafer includes a first sensor element and a second sensor element spatially separated from the first sensor element, the first and second sensor elements being respectively located in a first cavity and a second cavity each formed by the intermediate wafer and the sensor wafer, a first gas pressure in the first cavity differing from a second gas pressure in the second cavity, and the intermediate wafer having an opening at a point in a direction perpendicular to the main plane of extension.
    Type: Application
    Filed: May 5, 2014
    Publication date: March 24, 2016
    Inventors: Arnd Kaelberer, Jochen Reinmuth, Johannes Classen
  • Patent number: 9291455
    Abstract: A method for operating and/or measuring a micromechanical device. The device has a first and second seismic mass which are movable by oscillation relative to a substrate; a first drive device for deflecting the first seismic mass and a second drive device for deflecting the second seismic mass, parallel to a drive direction in a first orientation; a third drive device for deflecting the first seismic mass, and a fourth drive device for deflecting the second seismic mass in parallel to the drive direction and according to a second orientation opposite from the first orientation; a first detection device for detecting drive motion of the first seismic mass; and a second detection device for detecting drive motion of the second seismic mass. A first and a second detection signal are generated by the first and second detection devices, the first detection signal being evaluated separately from the second detection signal.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: March 22, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Christoph Gauger, Patrick Wellner
  • Patent number: 9279822
    Abstract: A micromechanical structure includes: a substrate which has a main plane of extension; and a mass which is movable relative to the substrate, the movable mass being elastically suspended via at least one coupling spring. A first subregion of the movable mass is situated, at least partially, between the substrate and the coupling spring along a vertical direction which is essentially perpendicular to the main plane of extension.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: March 8, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventor: Johannes Classen
  • Patent number: 9266720
    Abstract: A component has at least one MEMS element and at least one cap made of a semiconductor material. The cap, in addition to its mechanical function as a terminus of a cavity and protection of the micromechanical structure, is provided with an electrical functionality. The micromechanical structure of the MEMS element of the component is situated in a cavity between a carrier and the cap, and includes at least one structural element which is deflectable out of the component plane within the cavity. The cap includes at least one section extending over the entire thickness of the cap, which is electrically insulated from the adjoining semiconductor material in such a way that it may be electrically contacted independently from the remaining sections of the cap.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: February 23, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Axel Franke, Jens Frey, Heribert Weber, Frank Fischer, Patrick Wellner, Mirko Hattass, Daniel Christoph Meisel
  • Patent number: 9261363
    Abstract: A yaw rate sensor includes a drive mass element which is situated above a surface of a substrate and is drivable to vibrate by a drive device along a first axis extending along the surface, having a detection mass element, which is deflectable under the influence of a Coriolis force along a second axis perpendicular to the surface, and having a detection device by which the deflection of the detection mass element along the second axis is detectable. Due to the arrangement of the second axis perpendicular to the surface, the yaw rate sensor may be integrated into a chip together with additional yaw rate sensors suitable for detection of rotations about axes of rotation in other directions.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: February 16, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Reinhard Neul, Johannes Classen, Axel Franke, Marco Quander, Joerg Hauer, Udo-Martin Gomez, Kersten Kehr
  • Patent number: 9229020
    Abstract: A micropatterned component, for measuring accelerations and/or yaw rates, including a substrate having a principal plane of extension of the substrate, an electrode, and a further electrode; the electrode having a principal plane of extension of the electrode, and the further electrode having a principal plane of extension of the further electrode; the principal plane of extension of the electrode being set parallelly to a normal direction perpendicular to the principal plane of extension of the substrate; the principal plane of extension of the further electrode being set parallelly to the normal direction; the electrode having an electrode height extending in the normal direction; the electrode having a flow channel extending completely through the electrode in a direction parallel to the principal plane of extension of the substrate; the flow channel having a channel depth extending parallelly to the normal direction; the channel depth being less than the electrode height.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: January 5, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventor: Johannes Classen