Patents by Inventor Johannes Georg Laven

Johannes Georg Laven has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200006539
    Abstract: An IGBT having a barrier region is presented. A power unit cell of the IGBT has at least two trenches that may both extend into the barrier region. The barrier region may be p-doped and vertically confined, i.e., in and against the extension direction, by means of the drift region. The barrier region can be electrically floating.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 2, 2020
    Inventors: Alexander Philippou, Christian Jaeger, Johannes Georg Laven, Antonio Vellei
  • Patent number: 10497801
    Abstract: A method of manufacturing a semiconductor device includes forming a profile of net doping in a drift zone of a semiconductor body by multiple irradiations with protons and generating hydrogen-related donors by annealing the semiconductor body. At least 50% of a vertical extension of the drift zone between first and second sides of the semiconductor body is undulated and includes multiple doping peak values between 1×1013 cm?3 and 5×1014 cm?3.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: December 3, 2019
    Assignee: Infineon Technologies AG
    Inventors: Elmar Falck, Andreas Haertl, Manfred Pfaffenlehner, Francisco Javier Santos Rodriguez, Daniel Schloegl, Hans-Joachim Schulze, Andre Stegner, Johannes Georg Laven
  • Patent number: 10475910
    Abstract: A semiconductor device includes an insulated gate bipolar transistor (IGBT) arrangement having a first configuration region of emitter-side insulated gate bipolar transistor structures, a second configuration region of emitter-side insulated gate bipolar transistor structures, a collector layer and a drift layer. The drift layer is arranged between the collector layer and the emitter-side insulated gate bipolar transistor structures of the first configuration region and the second configuration region. The collector layer includes at least a first doping region laterally adjacent to a second doping region, the doping regions having different charge carrier life times, different conductivity types or different doping concentrations. The first configuration region is located with at least a partial lateral overlap to the first doping region, and the second configuration region is located with at least a partial lateral overlap to the second doping region.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: November 12, 2019
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Hans-Joachim Schulze, Roman Baburske
  • Patent number: 10475909
    Abstract: An electric assembly includes a bipolar switching device and a transistor circuit. The transistor circuit is electrically connected in parallel with the bipolar switching device and includes a normally-on wide bandgap transistor.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: November 12, 2019
    Assignee: Infineon Technologies, AG
    Inventors: Thomas Basler, Roman Baburske, Daniel Domes, Johannes Georg Laven, Roland Rupp
  • Patent number: 10461739
    Abstract: Transistor devices are provided. A transistor device includes a unipolar transistor coupled between a first terminal and a second terminal; and a bipolar transistor coupled in parallel to the unipolar transistor between the first terminal and the second terminal. The bipolar transistor is configured to carry a majority of a current flowing through the transistor device when at least one of the current or a control voltage controlling the unipolar transistor and the bipolar transistor exceeds a predetermined threshold. The bipolar transistor is further configured to have a threshold voltage higher than a threshold voltage of the unipolar transistor, and a difference between the threshold voltage of the bipolar transistor and the threshold voltage of the unipolar transistor is at least 1 V.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: October 29, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Basler, Roman Baburske, Johannes Georg Laven, Franz-Josef Niedernostheide, Hans-Joachim Schulze
  • Publication number: 20190319122
    Abstract: A power semiconductor device is disclosed. In one example, the device comprises a semiconductor body coupled to a first load terminal and a second load terminal and comprising a drift region configured to conduct a load current between said terminals. The drift region comprises dopants of a first conductivity type. A source region is arranged in electrical contact with the first load terminal and comprises dopants of the first conductivity type. A channel region comprises dopants of a second conductivity. At least one power unit cell that includes at least one first type trench. The at least one power unit cell further includes a first mesa zone and a second mesa zone of the semiconductor body.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 17, 2019
    Applicant: Infineon Technologies AG
    Inventors: Alexander Philippou, Christian Jaeger, Johannes Georg Laven, Max Christian Seifert, Antonio Vellei
  • Publication number: 20190319092
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminals. The body includes: at least a diode structure configured to conduct a load current between the terminals and including an anode port electrically connected to the first load terminal and a cathode port electrically connected to the second load terminal; and drift and field stop regions of the same conductivity type. The cathode port includes first port sections and second port sections with dopants of the opposite conductivity type. A transition between each of the second port sections and the field stop region forms a respective pn-junction that extends along a first lateral direction. A diffusion voltage of a respective one of the pn-junctions in an extension direction perpendicular to the first lateral direction is greater than a lateral voltage drop laterally overlapping with the lateral extension of the respective pn-junction.
    Type: Application
    Filed: June 3, 2019
    Publication date: October 17, 2019
    Inventors: Roman Baburske, Philip Christoph Brandt, Johannes Georg Laven
  • Patent number: 10439055
    Abstract: An IGBT having a barrier region is presented. A power unit cell of the IGBT has at least two trenches that may both extend into the barrier region. The barrier region may be p-doped and vertically confined, i.e., in and against the extension direction, by means of the drift region. The barrier region can be electrically floating.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: October 8, 2019
    Assignee: Infineon Technologies AG
    Inventors: Alexander Philippou, Christian Jaeger, Johannes Georg Laven, Antonio Vellei
  • Publication number: 20190305087
    Abstract: An IGBT having a barrier region is provided. A power unit cell of the IGBT has at least two trenches that may both extend into the barrier region. The at least two trenches may both have a respective trench electrode coupled to a control terminal of the IGBT. For example, the trench electrodes are structured to reduce the total gate charge of the IGBT. The barrier region may be p-doped and vertically confined, i.e., in and against the extension direction, by the drift region. The barrier region can be electrically floating.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 3, 2019
    Inventors: Alexander Philippou, Roman Baburske, Christian Jaeger, Johannes Georg Laven, Helmut Maeckel
  • Publication number: 20190295848
    Abstract: A semiconductor device and method is disclosed. In one example, the method for forming a semiconductor device includes forming a trench extending from a front side surface of a semiconductor substrate into the semiconductor substrate. The method includes forming of material to be structured inside the trench. Material to be structured is irradiated with a tilted reactive ion beam at a non-orthogonal angle with respect to the front side surface such that an undesired portion of the material to be structured is removed due to the irradiation with the tilted reactive ion beam while an irradiation of another portion of the material to be structured is masked by an edge of the trench.
    Type: Application
    Filed: June 14, 2019
    Publication date: September 26, 2019
    Applicant: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Anton Mauder, Hans-Joachim Schulze, Werner Schustereder
  • Patent number: 10424645
    Abstract: A semiconductor device includes a first source wiring substructure connected to a plurality of source doping region portions of a transistor structure, and a second source wiring substructure connected to a plurality of source field electrodes located in a plurality of source field trenches extending into a semiconductor substrate. A contact wiring portion of the first source wiring substructure and a contact wiring portion of the second source wiring substructure are located in a wiring layer of a layer stack located on the semiconductor substrate. The contact wiring portion of the first source wiring substructure and the contact wiring portion of the second source wiring substructure each have a lateral size sufficient for a contact for at least a temporary test measurement. The wiring layer including the contact wiring portions is located closer to the substrate than any ohmic electrical connection between the first and the second source wiring substructures.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: September 24, 2019
    Assignee: Infineon Technologies AG
    Inventors: Alexander Philippou, Erich Griebl, Johannes Georg Laven, Maria Cotorogea
  • Publication number: 20190288094
    Abstract: According to an embodiment of a semiconductor device, the semiconductor device includes a semiconductor mesa having source zones arranged along a longitudinal axis of the semiconductor mesa and at least one body zone forming first pn junctions with the source zones and a second pn junction with a drift zone. The semiconductor device further includes stripe-shaped electrode structures on opposite sides of the semiconductor mesa and separation regions between neighboring ones of the source zones. At least one of the electrode structures includes a gate electrode. In the separation regions, at least one of (i) a capacitive coupling between the gate electrode and the semiconductor mesa and (ii) a conductivity of majority charge carriers of the drift zone is lower than outside of the separation regions.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Inventors: Roman Baburske, Matteo Dainese, Peter Lechner, Hans-Joachim Schulze, Johannes Georg Laven
  • Publication number: 20190273155
    Abstract: A power semiconductor device includes an active region surrounded by an inactive termination region each formed by part of a semiconductor body. The active region conducts load current between first and second load terminals. At least one power cell has trenches extending into the semiconductor body adjacent to each other along a first lateral direction and having a stripe configuration that extends along a second lateral direction into the active region. The trenches spatially confine a plurality of mesas each having at least one first type mesa electrically connected to the first load terminal and configured to conduct at least a part of the load current, and at least one second type mesa configured to not conduct the load current. A decoupling structure separates at least one of the second type mesas into a first section in the active region and a second section in the termination region.
    Type: Application
    Filed: May 10, 2019
    Publication date: September 5, 2019
    Inventors: Matteo Dainese, Alexander Philippou, Markus Bina, Ingo Dirnstorfer, Erich Griebl, Christian Jaeger, Johannes Georg Laven, Caspar Leendertz, Frank Dieter Pfirsch
  • Patent number: 10404250
    Abstract: Transistor devices are described that include a first transistor and a second transistor coupled in parallel between a first terminal and a second terminal. The second transistor is based on a wide bandgap semiconductor material. The second transistor has a breakthrough voltage lower than a breakthrough voltage of the first transistor over a predetermined operating range. The predetermined operating range comprises at least an operating range for which the transistor device is specified.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: September 3, 2019
    Assignee: Infineon Technologies AG
    Inventors: Thomas Basler, Roman Baburske, Johannes Georg Laven, Franz-Josef Niedernostheide, Hans-Joachim Schulze
  • Patent number: 10403556
    Abstract: A semiconductor device includes a drift structure formed in a semiconductor body. The drift structure forms a first pn junction with a body zone of a transistor cell. A gate structure extends from a first surface of the semiconductor body into the drift structure. A heat sink structure extends from the first surface into the drift structure. A thermal conductivity of the heat sink structure is greater than a thermal conductivity of the gate structure and/or a thermal capacity of the heat sink structure is greater than a thermal capacity of the gate structure.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 3, 2019
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Peter Irsigler, Joachim Mahler, Guenther Ruhl, Hans-Joachim Schulze, Markus Zundel
  • Patent number: 10381467
    Abstract: According to an embodiment of a semiconductor device, the device includes first and second trenches formed in a semiconductor body and an electrode disposed in each of the trenches. One of the electrodes is a gate electrode, and the other electrode is electrically disconnected from the gate electrode. The semiconductor device further includes a semiconductor mesa between the trenches. The semiconductor mesa includes a separation region and at least one of a source region and a body region located in the semiconductor mesa. A drift zone is provided below the at least one of the source region and the body region. In the separation region, at least one of (i) a capacitive coupling between the gate electrode and the semiconductor mesa and (ii) a conductivity of majority charge carriers of the drift zone is lower than outside of the separation region.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: August 13, 2019
    Assignee: Infineon Technologies AG
    Inventors: Roman Baburske, Matteo Dainese, Peter Lechner, Hans-Joachim Schulze, Johannes Georg Laven
  • Patent number: 10366895
    Abstract: A semiconductor device and method is disclosed. In one example, the method for forming a semiconductor device includes forming a trench extending from a front side surface of a semiconductor substrate into the semiconductor substrate. The method includes forming of material to be structured inside the trench. Material to be structured is irradiated with a tilted reactive ion beam at a non-orthogonal angle with respect to the front side surface such that an undesired portion of the material to be structured is removed due to the irradiation with the tilted reactive ion beam while an irradiation of another portion of the material to be structured is masked by an edge of the trench.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: July 30, 2019
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Anton Mauder, Hans-Joachim Schulze, Werner Schustereder
  • Publication number: 20190221481
    Abstract: A method for splitting a semiconductor wafer includes incorporating hydrogen atoms into at least a splitting region of a semiconductor wafer. The splitting region includes a concentration of nitrogen atoms higher than 1·1015 cm?3. The method further includes splitting the semiconductor wafer at the splitting region of the semiconductor wafer.
    Type: Application
    Filed: March 26, 2019
    Publication date: July 18, 2019
    Inventors: Hans-Joachim Schulze, Martin Faccinelli, Johannes Georg Laven
  • Patent number: 10347754
    Abstract: A power semiconductor device is disclosed. In one example, the device comprises a semiconductor body coupled to a first load terminal and a second load terminal and comprising a drift region configured to conduct a load current between said terminals. The drift region comprises dopants of a first conductivity type. A source region is arranged in electrical contact with the first load terminal and comprises dopants of the first conductivity type. A channel region comprises dopants of a second conductivity. At least one power unit cell that includes at least one first type trench. The at least one power unit cell further includes a first mesa zone and a second mesa zone of the semiconductor body.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: July 9, 2019
    Assignee: Infineon Technologies AG
    Inventors: Alexander Philippou, Christian Jaeger, Johannes Georg Laven, Max Christian Seifert, Antonio Vellei
  • Patent number: 10340337
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminals. The body includes: at least a diode structure configured to conduct a load current between the terminals and including an anode port electrically connected to the first load terminal and a cathode port electrically connected to the second load terminal; and drift and field stop regions of the same conductivity type. The cathode port includes first port sections and second port sections with dopants of the opposite conductivity type. A transition between each of the second port sections and the field stop region forms a respective pn-junction that extends along a first lateral direction. A diffusion voltage of a respective one of the pn-junctions in an extension direction perpendicular to the first lateral direction is greater than a lateral voltage drop laterally overlapping with the lateral extension of the respective pn-junction.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: July 2, 2019
    Assignee: Infineon Technologies AG
    Inventors: Roman Baburske, Johannes Georg Laven, Philip Christoph Brandt