Patents by Inventor John A. Ritchie, Jr.

John A. Ritchie, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8363679
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of Ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each has guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. As a local network, the architecture supports guaranteed bandwidth for delivery of data flows to a plurality of host devices.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: January 29, 2013
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Patent number: 7933288
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: April 26, 2011
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Patent number: 7801119
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: September 21, 2010
    Assignee: Scientific-Atlanta, LLC
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Publication number: 20090196205
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator.
    Type: Application
    Filed: April 13, 2009
    Publication date: August 6, 2009
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, JR., Lamar E. West, JR.
  • Patent number: 7519081
    Abstract: Disclosed herein are methods of providing a client with local area network connectivity and access to other services in a cable network. One such method includes: allocating bandwidth in the network to support bi-directional data communication between the host and a central concentrator. Bandwidth is allocated for a downstream flow on at least one downstream frequency channel based on a mapping between the downstream flow and a particular octet in a downstream packet. Bandwidth is allocated for an upstream flow on at least one non-shared upstream tone. The method also includes conveying a bi-directional data flow between the host and the concentrator over the allocated bandwidth, including conveying the upstream flow using the allocated bandwidth and conveying the downstream flow using the allocated bandwidth. The method also includes utilizing bandwidth in the network not allocated to data communications to provide the host with at least one audio/visual service.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: April 14, 2009
    Assignee: Cisco Technology, Inc.
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Patent number: 7336680
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: February 26, 2008
    Assignee: Scientific-Atlanta, Inc.
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Patent number: 7218901
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Moreover, an automatic frequency control resolves some issues of a free-running clock in an upstream tuner of the central concentrator by performing adjustments based on the average frequency error of a number of active upstream tones. In the preferred embodiments of the present invention, the automatic frequency control (AFC) utilizes a feedback loop for at least each active upstream tone. Also, the average of the active upstream tones is determined and is utilized in providing feedback to adjust the automatic frequency control (AFC).
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: May 15, 2007
    Assignee: Scientific-Atlanta, Inc.
    Inventors: Joseph Graham Mobley, Jiening Ao, Steven E. Blashewski, Florin Farcas, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Patent number: 6995806
    Abstract: An amplifier (125) includes a gain stage (210) for amplifying a signal received by the amplifier (125). The amplifier (125) also includes an AGC circuit (400) that adjusts the amplification of the gain stage (210) and that includes a comparator (440) for determining whether the input signal is one of a digital pilot signal and one of an analog pilot signal. The AGC circuit (400) processes both digital and analog pilot signals and automatically adjusts the processing method depending upon the type of pilot signal.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: February 7, 2006
    Assignee: Scientific-Atlanta, Inc.
    Inventors: Saleh Al-Araji, John A. Ritchie, Jr.
  • Patent number: 5790523
    Abstract: A test system for evaluating the operating state of a headend of a broadband communications network for communicating telephony signals between a telephony system and subscribers of communications services. Modulators at the headend transmit telephony signals in the forward band of the broadband communications network. The forward telephony channels are demodulated and demultiplexed by a plurality of subscriber terminals into individual telephony signals directed to an addressed subscriber. Signals returning from subscribers are digitized into standard telephony signals onto the reverse band of the broadband communications network, and demodulated by demodulators of the headend into a standard telephony signal that is interfaced to the telephony network. The test system evaluates the operating state of a selected demodulator of the headend by modulating a carrier with a predetermined data pattern to generate a upstream test signal.
    Type: Grant
    Filed: July 31, 1996
    Date of Patent: August 4, 1998
    Assignee: Scientific-Atlanta, Inc.
    Inventors: John A. Ritchie, Jr., Steve Idler, Gregory T. Dubberly
  • Patent number: 5594726
    Abstract: A broadband communications system for coupling telephony or other digital networks to a CATV network. The system transmits a multiplex of telephony signals in the forward band of the CATV network. Each forward channel is QPR modulated on a carrier and contains multiple subscriber telephony signals. The forward telephony channels are demodulated and demultiplexed by a plurality of subscriber terminals into the individual telephony signals directed to an addressed subscriber. Audio and control signals returning from the subscriber are digitized into standard telephony signals and QPSK modulated on a carrier onto the reverse band of the CATV network. The multiplicity of reverse band telephony channels are demodulated and multiplexed into a standard telephony signal which is directly interfaced to the telephony network.
    Type: Grant
    Filed: March 30, 1994
    Date of Patent: January 14, 1997
    Assignee: Scientific-Atlanta, Inc.
    Inventors: Leo J. Thompson, Gregory T. Dubberly, John A. Ritchie, Jr.
  • Patent number: 5499241
    Abstract: A broadband communications system for coupling telephony or other digital networks to a CTV network. The system includes transmitting a multiplex of telephony signals in 3 MHz channels in the forward band of the CTV network. Each 3 MHz channel is QPR modulated on a carrier and contains multiple subscriber telephony signals. The forward telephony channels are demodulated and demultiplexed by a plurality of subscriber terminals into the individual telephony signals directed to an addressed subscriber. The individually addressed telephony signal is then applied to a line card which connects the subscriber telephone equipment to the system. Audio and control signals returning from the subscriber are digitized into standard telephony signals and modulated on a carrier in 50 kHz reserved telephony channels onto the reverse band of the CTV network.
    Type: Grant
    Filed: September 17, 1993
    Date of Patent: March 12, 1996
    Assignee: Scientific-Atlanta, Inc.
    Inventors: Leo J. Thompson, Gregory T. Dubberly, John A. Ritchie, Jr., David M. Fellows