Patents by Inventor John Aaron Saunders

John Aaron Saunders has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210229766
    Abstract: An example robot includes a first actuator and a second actuator connecting a first portion of a first member of the robot to a second member of the robot. Extension of the first actuator accompanied by retraction of the second actuator causes the first member to roll in a first roll direction. Retraction of the first actuator accompanied by extension of the second actuator causes the first member to roll in a second roll direction. A third actuator connects a second portion of the first member to the second member. Extension of the third actuator accompanied by retraction of both the first and second actuators causes the first member to pitch in a first pitch direction. Retraction of the third actuator accompanied by extension of both the first and second actuators causes the first member to pitch in a second pitch direction.
    Type: Application
    Filed: April 13, 2021
    Publication date: July 29, 2021
    Applicant: Boston Dynamics, Inc.
    Inventors: Christopher Everett Thorne, John Aaron Saunders, Marco da Silva, Thomas H. Miller, Alexander Douglas Perkins
  • Publication number: 20210180619
    Abstract: An actuation pressure to actuate one or more hydraulic actuators may be determined based on a load on the one or more hydraulic actuators of a robotic device. Based on the determined actuation pressure, a pressure rail from among a set of pressure rails at respective pressures may be selected. One or more valves may connect the selected pressure rail to a metering valve. The hydraulic drive system may operate in a discrete mode in which the metering valve opens such that hydraulic fluid flows from the selected pressure rail through the metering valve to the one or more hydraulic actuators at approximately the supply pressure. Responsive to a control state of the robotic device, the hydraulic drive system may operate in a continuous mode in which the metering valve throttles the hydraulic fluid such that the supply pressure is reduced to the determined actuation pressure.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 17, 2021
    Applicant: Boston Dynamics, Inc.
    Inventors: Michael Murphy, John Aaron Saunders, Steven Potter
  • Publication number: 20210178604
    Abstract: Systems and methods related to multiple degree of freedom force sensors are disclosed. One aspect of the disclosure provides a load sensor. The load sensor comprises a first plate and a second plate, a plurality of single-axis load cells including first, second, and third single-axis load cells, wherein each of the first, second, and third single-axis load cells is disposed between the first plate and the second plate and is oriented along a first axis, and a plurality of constraint joints coupled to the first plate and the second plate, the plurality of constraint joints configured to inhibit translation of the first plate relative to the second plate in directions perpendicular to the first axis and configured to inhibit rotation of the first plate relative to the second plate about the first axis.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 17, 2021
    Inventors: John Aaron Saunders, Adam Henry Borrell, Joshua Timothy Geating
  • Publication number: 20210178579
    Abstract: Systems and methods related to intelligent grippers with individual cup control are disclosed. One aspect of the disclosure provides a method of determining grip quality between a robotic gripper and an object. The method comprises applying a vacuum to two or more cup assemblies of the robotic gripper in contact with the object, moving the object with the robotic gripper after applying the vacuum to the two or more cup assemblies, and determining, using at least one pressure sensor associated with each of the two or more cup assemblies, a grip quality between the robotic gripper and the object.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 17, 2021
    Inventors: John Aaron Saunders, Christopher Everett Thorne, Matthew Paul Meduna, Joshua Timothy Geating
  • Patent number: 10988192
    Abstract: An example robot includes a first actuator and a second actuator connecting a first portion of a first member of the robot to a second member of the robot. Extension of the first actuator accompanied by retraction of the second actuator causes the first member to roll in a first roll direction. Retraction of the first actuator accompanied by extension of the second actuator causes the first member to roll in a second roll direction. A third actuator connects a second portion of the first member to the second member. Extension of the third actuator accompanied by retraction of both the first and second actuators causes the first member to pitch in a first pitch direction. Retraction of the third actuator accompanied by extension of both the first and second actuators causes the first member to pitch in a second pitch direction.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: April 27, 2021
    Assignee: Boston Dynamics, Inc.
    Inventors: Christopher Everett Thorne, John Aaron Saunders, Marco da Silva, Thomas H. Miller, Alexander Douglas Perkins
  • Patent number: 10962033
    Abstract: An actuation pressure to actuate one or more hydraulic actuators may be determined based on a load on the one or more hydraulic actuators of a robotic device. Based on the determined actuation pressure, a pressure rail from among a set of pressure rails at respective pressures may be selected. One or more valves may connect the selected pressure rail to a metering valve. The hydraulic drive system may operate in a discrete mode in which the metering valve opens such that hydraulic fluid flows from the selected pressure rail through the metering valve to the one or more hydraulic actuators at approximately the supply pressure. Responsive to a control state of the robotic device, the hydraulic drive system may operate in a continuous mode in which the metering valve throttles the hydraulic fluid such that the supply pressure is reduced to the determined actuation pressure.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: March 30, 2021
    Assignee: Boston Dynamics, Inc.
    Inventors: Michael Murphy, John Aaron Saunders, Steven D. Potter
  • Patent number: 10927966
    Abstract: An example valve includes: a sleeve having a plurality of sleeve openings; a first conduit configured to be in hydraulic communication with a first chamber, where a first pressure sensor is disposed in the first conduit and configured to measure a pressure level of fluid in the first chamber; a second conduit configured to be in hydraulic communication with a second chamber, where a second pressure sensor is disposed in the second conduit and configured to measure a pressure level of fluid in the second chamber; a spool rotatable within the sleeve, wherein the spool includes a plurality of spool openings respectively corresponding to the plurality of sleeve openings; a rotary actuator coupled to the spool and configured to rotate the spool within the sleeve in clockwise and counter-clockwise directions; and a controller configured to cause the spool to rotate to one of a plurality of rotary positions.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: February 23, 2021
    Assignee: Boston Dynamics, Inc.
    Inventors: John Aaron Saunders, Malik Hansen, Jan Komsta
  • Patent number: 10808736
    Abstract: An example valve includes a sleeve having a plurality of openings. A spool is rotatable within the sleeve and includes a respective plurality of openings corresponding to the plurality of openings of the sleeve. A rotary actuator coupled to the spool is configured for rotating the spool within the sleeve to one of at least eight rotary positions. The rotary actuator can rotate the spool to a given rotary position in a clockwise or a counter-clockwise direction to cause at least a partial alignment between a subset of the respective plurality of openings of the spool and a subset of the plurality of openings of the sleeve.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: October 20, 2020
    Assignee: Boston Dynamics, Inc.
    Inventors: Steven D. Potter, John Aaron Saunders
  • Patent number: 10802508
    Abstract: A robot includes an inverted pendulum body having first and second end portions, a counter-balance body disposed on the inverted pendulum body and configured to move relative to the inverted pendulum body, at least one leg having first and second ends, and a drive wheel rotatably coupled to the second end of the at least one leg. The first end of the at least one leg is prismatically coupled to the second end portion of the inverted pendulum body.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: October 13, 2020
    Assignee: Boston Dynamics, Inc.
    Inventors: John Aaron Saunders, Kevin Blankespoor, Steven D. Potter
  • Patent number: 10780578
    Abstract: A method of operating a robot includes driving a robot to approach a reach point, extending a manipulator arm forward of the reach point, and maintaining a drive wheel and a center of mass of the robot rearward of the reach point by moving a counter-balance body relative to an inverted pendulum body while extending the manipulator arm forward of the reach point. The robot includes the inverted pendulum body, the counter-balance body deposed on the inverted pendulum body, the manipulator arm connected to the inverted pendulum body, at least one leg having a first end prismatically coupled to the inverted pendulum body, and the drive wheel rotatably coupled to a second end of the at least one leg.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: September 22, 2020
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, John Aaron Saunders, Steven D. Potter, Vadim Chernyak, Shervin Talebinejad
  • Patent number: 10632616
    Abstract: Example implementations may relate a robot part including a processor, at least one sensor, and an interface providing wireless connectivity. The processor may determine that the robot part is removablly connected to a particular robotic system and may responsively obtain identification information to identify the particular robotic system. While the robot part is removablly connected to the particular robotic system, the processor may (i) transmit, to an external computing system, sensor data that the processor received from the at least one sensor and (ii) receive, from the external computing system, environment information (e.g., representing characteristics of an environment in which the particular robotic system is operating) based on interpretation of the sensor data. And based on the identification information and the environment information, the processor may generate a command that causes the particular robotic system to carry out a task in the environment.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: April 28, 2020
    Assignee: Boston Dymanics, Inc.
    Inventors: John Aaron Saunders, Michael Patrick Murphy
  • Publication number: 20190312323
    Abstract: An example system is disclosed for thermal management of batteries. The system may include a cell bank that includes first and second cell frame sections, a heat bus, and thermal interface material. The first and second cell frame sections may define opposite surfaces of the cell bank. Each cell frame section may include recesses to align battery cells for welding and provided conductive connections between the cells to create a string of cells with a combined power output. Each recess may include a divider between the battery cells to preload the cells against a thermal junction during assembly. The heat bus may be provided between the cell frame sections. The heat bus may include heat pipes that extend between the battery cells and across the cell frame sections. The thermal interface material may be positioned to transfer heat from the cells to the heat pipes at their thermal junction.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 10, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: Brian Todd Dellon, John Aaron Saunders
  • Publication number: 20190255701
    Abstract: A method of operating a robot includes driving a robot to approach a reach point, extending a manipulator arm forward of the reach point, and maintaining a drive wheel and a center of mass of the robot rearward of the reach point by moving a counter-balance body relative to an inverted pendulum body while extending the manipulator arm forward of the reach point. The robot includes the inverted pendulum body, the counter-balance body deposed on the inverted pendulum body, the manipulator arm connected to the inverted pendulum body, at least one leg having a first end prismatically coupled to the inverted pendulum body, and the drive wheel rotatably coupled to a second end of the at least one leg.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 22, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, John Aaron Saunders, Steven D. Potter, Vadim Chernyak, Shervin Talebinejad
  • Publication number: 20190258275
    Abstract: A robot includes an inverted pendulum body having first and second end portions, a counter-balance body disposed on the inverted pendulum body and configured to move relative to the inverted pendulum body, at least one leg having first and second ends, and a drive wheel rotatably coupled to the second end of the at least one leg. The first end of the at least one leg is prismatically coupled to the second end portion of the inverted pendulum body.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 22, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: John Aaron Saunders, Kevin Blankespoor, Steven D. Potter
  • Publication number: 20190242482
    Abstract: An example valve includes: a sleeve having a plurality of sleeve openings; a first conduit configured to be in hydraulic communication with a first chamber, where a first pressure sensor is disposed in the first conduit and configured to measure a pressure level of fluid in the first chamber; a second conduit configured to be in hydraulic communication with a second chamber, where a second pressure sensor is disposed in the second conduit and configured to measure a pressure level of fluid in the second chamber; a spool rotatable within the sleeve, wherein the spool includes a plurality of spool openings respectively corresponding to the plurality of sleeve openings; a rotary actuator coupled to the spool and configured to rotate the spool within the sleeve in clockwise and counter-clockwise directions; and a controller configured to cause the spool to rotate to one of a plurality of rotary positions.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: John Aaron Saunders, Malik Hansen, Jan Komsta
  • Patent number: 10374272
    Abstract: An example system is disclosed for thermal management of batteries. The system may include a cell bank that includes first and second cell frame sections, a heat bus, and thermal interface material. The first and second cell frame sections may define opposite surfaces of the cell bank. Each cell frame section may include recesses to align battery cells for welding and provided conductive connections between the cells to create a string of cells with a combined power output. Each recess may include a divider between the battery cells to preload the cells against a thermal junction during assembly. The heat bus may be provided between the cell frame sections. The heat bus may include heat pipes that extend between the battery cells and across the cell frame sections. The thermal interface material may be positioned to transfer heat from the cells to the heat pipes at their thermal junction.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: August 6, 2019
    Assignee: Boston Dynamics, Inc.
    Inventors: Brian Todd Dellon, John Aaron Saunders
  • Publication number: 20190226503
    Abstract: An actuation pressure to actuate one or more hydraulic actuators may be determined based on a load on the one or more hydraulic actuators of a robotic device. Based on the determined actuation pressure, a pressure rail from among a set of pressure rails at respective pressures may be selected. One or more valves may connect the selected pressure rail to a metering valve. The hydraulic drive system may operate in a discrete mode in which the metering valve opens such that hydraulic fluid flows from the selected pressure rail through the metering valve to the one or more hydraulic actuators at approximately the supply pressure. Responsive to a control state of the robotic device, the hydraulic drive system may operate in a continuous mode in which the metering valve throttles the hydraulic fluid such that the supply pressure is reduced to the determined actuation pressure.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: Michael Murphy, John Aaron Saunders, Steven D. Potter
  • Publication number: 20190154063
    Abstract: An example valve includes a sleeve having a plurality of openings. A spool is rotatable within the sleeve and includes a respective plurality of openings corresponding to the plurality of openings of the sleeve. A rotary actuator coupled to the spool is configured for rotating the spool within the sleeve to one of at least eight rotary positions. The rotary actuator can rotate the spool to a given rotary position in a clockwise or a counter-clockwise direction to cause at least a partial alignment between a subset of the respective plurality of openings of the spool and a subset of the plurality of openings of the sleeve.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: Steven D. Potter, John Aaron Saunders
  • Patent number: 10295069
    Abstract: An example valve includes: a sleeve having a plurality of sleeve openings; a first conduit configured to be in hydraulic communication with a first chamber, where a first pressure sensor is disposed in the first conduit and configured to measure a pressure level of fluid in the first chamber; a second conduit configured to be in hydraulic communication with a second chamber, where a second pressure sensor is disposed in the second conduit and configured to measure a pressure level of fluid in the second chamber; a spool rotatable within the sleeve, wherein the spool includes a plurality of spool openings respectively corresponding to the plurality of sleeve openings; a rotary actuator coupled to the spool and configured to rotate the spool within the sleeve in clockwise and counter-clockwise directions; and a controller configured to cause the spool to rotate to one of a plurality of rotary positions.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: May 21, 2019
    Assignee: Boston Dynamics, Inc.
    Inventors: John Aaron Saunders, Malik Hansen, Jan Komsta
  • Publication number: 20190143531
    Abstract: Example methods and devices for touch-down detection for a robotic device are described herein. In an example embodiment, a computing system may receive a force signal due to a force experienced at a limb of a robotic device. The system may receive an output signal from a sensor of the end component of the limb. Responsive to the received signals, the system may determine whether the force signal satisfies a first threshold and determine whether the output signal satisfies a second threshold. Based on at least one of the force signal satisfying the first threshold or the output signal satisfying the second threshold, the system of the robotic device may provide a touch-down output indicating touch-down of the end component of the limb with a portion of an environment.
    Type: Application
    Filed: January 17, 2019
    Publication date: May 16, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: Zachary Jackowski, Kevin Blankespoor, John Aaron Saunders, Francis M. Agresti