Patents by Inventor John Carberry

John Carberry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200157703
    Abstract: A method is described for the atmospheric pressure sintering of silicon to form high density polycrystalline silicon preforms that optionally may be annealed at higher temperatures to form wafers suitable for use in solar cells. The preforms are formed from nanometer scale, high surface area silicon that is sintered to form the near “full density” polycrystalline silicon preforms. Subsequent annealing of the preforms may be used to grow grains suitable for use as wafers for solar cells. The polycrystalline silicon may be used directly to form semiconductor structures other than wafers suitable for solar cells, such as to form electrodes, electrode surfaces, and thermoelectric devices.
    Type: Application
    Filed: July 25, 2019
    Publication date: May 21, 2020
    Applicant: MOSSEY CREEK TECHNOLOGIES
    Inventors: John Carberry, Robert Tesch, Tim Wilson, Devin Roberts
  • Patent number: 10580954
    Abstract: Methods and processes to fabricate thermoelectric materials and more particularly to methods and processes to fabricate nano-sized doped silicon-based semiconductive materials to use as thermoelectrics in the production of electricity from recovered waste heat. Substantially oxidant-free and doped silicon particulates are fractured and sintered to form a porous nano-sized silicon-based thermoelectric material.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: March 3, 2020
    Assignee: Mossey Creek Technologies Inc.
    Inventor: John Carberry
  • Publication number: 20200020930
    Abstract: Anodes formed from a thixotropic mixture including spherical silicon nanospheres, a dispersant-binder, an alcoholic carrier liquid, and conductive carbon are disclosed. Cathodes formed from a thixotropic mixture including lithium metal oxide particulates, a dispersant-binder, an alcoholic carrier liquid, and conductive carbon also are disclosed. The thixotropic mixtures are applied to a metal conductor foil or combined with metal conductor particulates and cured to form the electrode. After curing, the electrode includes the metal conductor and the solids held in a crosslinked polymer matrix formed by the dispersant-binder on the surface of the metal conductor as a thin film. Anodes are preferably formed from a copper metal conductor, while cathodes are preferably formed from an aluminum metal conductor. The electrodes formed from the thixotropic mixture may offer an up to 1,200% improvement in energy transfer in relation to conventional carbon-based anodes.
    Type: Application
    Filed: May 14, 2019
    Publication date: January 16, 2020
    Applicant: Mossey Creek Technologies, Inc.
    Inventor: John Carberry
  • Patent number: 10270094
    Abstract: Anodes for the lithium secondary batteries include a strong, electrically conductive, porous superstructure filled with a milled or melted interstitial material, such as nano-scaled silicon; the milled or melted interstitial material provides high lithiation capacity, and the superstructure provides durability and controls the anode's electromechanical expansion and contraction during the lithiation and de-lithiation cycle. Embodiments include porous superstructures comprised of silicon carbide, tungsten, and other materials, many of which offer capability of lithiating.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: April 23, 2019
    Assignee: Mossey Creek Technologies, Inc.
    Inventors: John Carberry, Tim Wilson
  • Patent number: 10227557
    Abstract: A method for producing astaxanthin incorporates a method for producing astaxanthin-rich algae cells and a method for extracting astaxanthin therefrom. An initial feedstock comprises healthy algae, water, and nutrients. During a growth phase, carbon dioxide and light from a light source are supplied to the feedstock, thereby amplifying the algae. At least a portion of the nutrients remaining after amplification of the algae are separated from the amplified algae. During a stress phase, carbon dioxide and light are supplied to the amplified algae, thereby promoting production of astaxanthin by the amplified algae. The amplified algae and a cover are placed within an interior of an attrition mill having interior surfaces and media which are substantially non-reactive to astaxanthin and milled to release the astaxanthin from the algae. The cover limits oxidation of the released astaxanthin.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: March 12, 2019
    Assignee: Sustainable Nutrition, Inc.
    Inventors: John Carberry, Matthew John Carberry, Dennis Steven Tagrin
  • Patent number: 10030941
    Abstract: A multilayer armor is provided that includes a first rigid layer, a second rigid layer, and an interlayer securing the first and second rigid layers to one another. At least one of the first and second rigid layers can include a plurality of regions with a physical or material property that varies between the regions. The interlayer can have a force-extension ratio of 5,600 psi/in or less. The interlayer can have a physical or material property that varies within the interlayer.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: July 24, 2018
    Assignee: ORAN SAFETY GLASS INC.
    Inventors: John Carberry, Katherine Leighton, Carsten Weinhold, Eric Urruti
  • Publication number: 20180094209
    Abstract: Essential oils are extracted from a biomass through milling in a solvent to form a solution of the essential oil in the solvent. The solvent is or is part of a cover than reduces oxidative and other degradation of the essential oil during milling and isolation. The solubilized essential oil may be allowed to adhere to the originating milled biomass to form a feed or nutritional supplement. The solvent may be evaporated from the solubilized essential oil to form an essential oil concentrate. This essential oil concentrate may be used directly, adhered to a different biomass than the originating biomass, or used in combination with pharmaceutical, nutritional, or feed preparations. The essential oil concentrate is preferably adhered to the different biomass through milling under a cover to reduce oxidative and other degradation. The essential oil may be astaxanthin, capsaicin compounds, or cannabinoids.
    Type: Application
    Filed: October 10, 2017
    Publication date: April 5, 2018
    Inventors: John Carberry, Matthew John Carberry
  • Publication number: 20180097168
    Abstract: Methods and processes to fabricate thermoelectric materials and more particularly to methods and processes to fabricate nano-sized doped silicon-based semiconductive materials to use as thermoelectrics in the production of electricity from recovered waste heat. Substantially oxidant-free and doped silicon particulates are fractured and sintered to form a porous nano-sized silicon-based thermoelectric material.
    Type: Application
    Filed: September 13, 2017
    Publication date: April 5, 2018
    Applicant: Mossey Creek Technologies Inc.
    Inventor: John Carberry
  • Patent number: 9911909
    Abstract: A method for fabricating a thermoelectric material comprising providing an initial feedstock of silicon metal particulates, providing an extracting liquid to extract oxidants from the silicon metal particulates, combining the silicon metal particulates and the extracting liquid into a mixture and milling said mixture, withdrawing at least a portion of the milled mixture, within the withdrawn portion of the milled mixture, separating milled silicon metal particulates from the extracting liquid, and mixing the milled silicon metal particulates with a dopant to form a thermoelectric material.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: March 6, 2018
    Assignee: Mossey Creek Technologies, Inc.
    Inventor: John Carberry
  • Patent number: 9908282
    Abstract: A method of manufacturing a semiconductor includes providing a mold defining a planar capillary space; placing a measure of precursor in fluid communication with the capillary space; creating a vacuum around the mold and within the planar capillary space; melting the precursor; allowing the melted precursor to flow into the capillary space; and cooling the melted precursor within the mold such that the precursor forms a semiconductor, the operations of melting the precursor, allowing the precursor to flow into the capillary space, and cooling the melted precursor occurring in the vacuum.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: March 6, 2018
    Assignee: Mossey Creek Technologies, Inc.
    Inventor: John Carberry
  • Publication number: 20170317347
    Abstract: Anodes for the lithium secondary batteries include a strong, electrically conductive, porous superstructure filled with a milled or melted interstitial material, such as nano-scaled silicon; the milled or melted interstitial material provides high lithiation capacity, and the superstructure provides durability and controls the anode's electromechanical expansion and contraction during the lithiation and de-lithiation cycle. Embodiments include porous superstructures comprised of silicon carbide, tungsten, and other materials, many of which offer capability of lithiating.
    Type: Application
    Filed: November 4, 2015
    Publication date: November 2, 2017
    Inventors: John Carberry, Tim Wilson
  • Patent number: 9793461
    Abstract: Methods and processes to fabricate thermoelectric materials and more particularly to methods and processes to fabricate nano-sized doped silicon-based semiconductive materials to use as thermoelectrics in the production of electricity from recovered waste heat. Substantially oxidant-free and doped silicon particulates are fractured and sintered to form a porous nano-sized silicon-based thermoelectric material.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: October 17, 2017
    Assignee: Mossey Creek Technologies, Inc.
    Inventor: John Carberry
  • Publication number: 20170233887
    Abstract: A method for manufacturing a semiconductor for a solar cell and other applications is disclosed. A separating layer may be introduced into a mold having an interior defining a shape of a solar cell or other substantially planer object. A silicon nitride coating may be applied onto one or more interior surfaces of the mold. A planar capillary space is formed along the conductive layer. The silicon is melted under an ultra-low oxygen content cover atmosphere and allowed to flow into the capillary space. The melted silicon is then cooled within the capillary space such that the silicon forms one part of a P-N junction in the body of the semiconductor.
    Type: Application
    Filed: December 2, 2016
    Publication date: August 17, 2017
    Inventors: John Carberry, Tim Wilson
  • Publication number: 20170125805
    Abstract: Anodes for the lithium secondary batteries include a strong, electrically conductive, porous superstructure filled with a milled or melted interstitial material, such as nano-scaled silicon; the milled or melted interstitial material provides high lithiation capacity, and the superstructure provides durability and controls the anode's electromechanical expansion and contraction during the lithiation and de-lithiation cycle. Embodiments include porous superstructures comprised of silicon carbide, tungsten, and other materials, many of which offer capability of lithiating.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Inventors: John Carberry, Tim Wilson
  • Publication number: 20170103886
    Abstract: A method of manufacturing a semiconductor includes providing a mold defining a planar capillary space; placing a measure of precursor in fluid communication with the capillary space; creating a vacuum around the mold and within the planar capillary space; melting the precursor; allowing the melted precursor to flow into the capillary space; and cooling the melted precursor within the mold such that the precursor forms a semiconductor, the operations of melting the precursor, allowing the precursor to flow into the capillary space, and cooling the melted precursor occurring in the vacuum.
    Type: Application
    Filed: April 15, 2014
    Publication date: April 13, 2017
    Inventor: John Carberry
  • Patent number: 9620664
    Abstract: A tool useful in the manufacture of a semiconductor is disclosed. A mold is providing having an interior defining a planar capillary space. A coating substantially covers at least the planar capillary space of the graphite member. The coating is substantially non-reactive to silicon at temperatures greater than approximately 1420 degrees Centigrade.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: April 11, 2017
    Assignee: Mossey Creek Technologies, Inc.
    Inventor: John Carberry
  • Patent number: 9543493
    Abstract: A thermoelectric semiconducting assembly. Two parallel plates, a first plate and a second plate, are spaced apart. A plurality of pellets are fitted into said first plate and into said second plate, each said pellet comprising a body, a first cap, and a second cap, said body including a silicon material, said first cap and said second cap including an electrically resistive ceramic material, each pellet in said second plate being connected to a pellet in said first plate. Each pellet includes a doped body, wherein half of said pellets are doped with a p-type dopant to form a p-type pellet and half of said pellets are doped with an n-type dopant to form an n-type pellet. Each plate includes p-type pellets and n-type pellets in an alternating pattern, and each p-type pellet in said first plate connects with an n-type pellet in said second plate, and wherein each n-type pellet in said first plate connects with a p-type pellet in said second plate.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: January 10, 2017
    Assignee: Mossey Creek Technologies, Inc.
    Inventor: John Carberry
  • Publication number: 20160197257
    Abstract: A method for fabricating a thermoelectric material comprising providing an initial feedstock of silicon metal particulates, providing an extracting liquid to extract oxidants from the silicon metal particulates, combining the silicon metal particulates and the extracting liquid into a mixture and milling said mixture, withdrawing at least a portion of the milled mixture, within the withdrawn portion of the milled mixture, separating milled silicon metal particulates from the extracting liquid, and mixing the milled silicon metal particulates with a dopant to form a thermoelectric material.
    Type: Application
    Filed: March 11, 2016
    Publication date: July 7, 2016
    Inventor: John Carberry
  • Publication number: 20160075989
    Abstract: A method for producing astaxanthin incorporates a method for producing astaxanthin-rich algae cells and a method for extracting astaxanthin therefrom. An initial feedstock comprises healthy algae, water, and nutrients. During a growth phase, carbon dioxide and light from a light source are supplied to the feedstock, thereby amplifying the algae. At least a portion of the nutrients remaining after amplification of the algae are separated from the amplified algae. During a stress phase, carbon dioxide and light are supplied to the amplified algae, thereby promoting production of astaxanthin by the amplified algae. The amplified algae and a cover are placed within an interior of an attrition mill having interior surfaces and media which are substantially non-reactive to astaxanthin and milled to release the astaxanthin from the algae. The cover limits oxidation of the released astaxanthin.
    Type: Application
    Filed: September 8, 2015
    Publication date: March 17, 2016
    Inventors: John Carberry, Matthew John Carberry, Dennis Steven Tagrin
  • Publication number: 20160072033
    Abstract: Methods and processes to fabricate thermoelectric materials and more particularly to methods and processes to fabricate nano-sized doped silicon-based semiconductive materials to use as thermoelectrics in the production of electricity from recovered waste heat. Substantially oxidant-free and doped silicon particulates are fractured and sintered to form a porous nano-sized silicon-based thermoelectric material.
    Type: Application
    Filed: September 4, 2015
    Publication date: March 10, 2016
    Inventor: John Carberry