Patents by Inventor John D. Groopman

John D. Groopman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6969605
    Abstract: A hand held, self-contained, automatic, low power and rapid sensor platform for detecting and quantifying a plurality of analytes. A sample solution potentially containing an unknown amount of an analyte is passed through an affinity column which contains antibodies to which the analyte binds thereby extracting the analyte. The affinity column is then rinsed to remove any other chemicals that may fluoresce. The rinsed affinity column is then eluted with a known volume of elution fluid causing the analyte to release from the antibody and dissolve in the fluid (eluant). The eluant is then placed in the quartz cuvette of a fluorometer. The analyte suspended in the eluant fluoresces at a waveband which is different than that of the light source that excites it. The amount of fluorescence is measured and the level of analyte determined.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: November 29, 2005
    Assignee: The Johns Hopkins University
    Inventors: Charles W. Anderson, C. Brent Bargeron, Richard C. Benson, Micah A. Carlson, Allan B. Fraser, John D. Groopman, Harvey W. Ko, David R. Kohler, Terry E. Phillips, Paul T. Strickland
  • Publication number: 20020102556
    Abstract: Genotyping can be accomplished by analysis of short, defined DNA segments using electrospray ionization mass spectrometry. The DNA segments are produced using specially designed primers to amplify a cDNA or genomic DNA template. The primers contain a recognition site for a restriction endonuclease. The amplification products are digested with the restriction endonuclease. Single nucleotide polymorphisms can be detected rapidly and reliably.
    Type: Application
    Filed: January 31, 2001
    Publication date: August 1, 2002
    Inventors: Steven J. Laken, Bert Vogelstein, Kenneth W. Kinzler, John D. Groopman, Peta E. Jackson, Marlin D. Friesen
  • Publication number: 20010053556
    Abstract: A hand held, self-contained, automatic, low power and rapid sensor platform for detecting and quantifying a plurality of analytes. A sample solution potentially containing an unknown amount of an analyte is passed through an affinity column which contains antibodies to which the analyte binds thereby extracting the analyte. The affinity column is then rinsed to remove any other chemicals that may fluoresce. The rinsed affinity column is then eluted with a known volume of elution fluid causing the analyte to release from the antibody and dissolve in the fluid (eluant). The eluant is then placed in the quartz cuvette of a fluorometer. The analyte suspended in the eluant fluoresces at a waveband which is different than that of the light source that excites it. The amount of fluorescence is measured and the level of analyte determined.
    Type: Application
    Filed: July 16, 2001
    Publication date: December 20, 2001
    Inventors: Charles W. Anderson, C. Brent Bargeron, Richard C. Benson, Micah A. Carlson, Allan B. Fraser, John D. Groopman, Harvey W. Ko, David R. Kohler, Terry E. Phillips, Paul T. Strickland
  • Patent number: 6261848
    Abstract: A hand held, self-contained, automatic, low power and rapid sensor platform for detecting and quantifying a plurality of analytes. A sample solution potentially containing an unknown amount of an analyte is passed through an affinity column which contains antibodies to which the analyte binds thereby extracting the analyte. The affinity column is then rinsed to remove any other chemicals that may fluoresce. The rinsed affinity column is then eluted with a known volume of elution fluid causing the analyte to release from the antibody and dissolve in the fluid (eluant). The eluant is then placed in the quartz cuvette of a fluorometer. The analyte suspended in the eluant fluoresces at a waveband which is different than that of the light source that excites it. The amount of fluorescence is measured and the level of analyte determined.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: July 17, 2001
    Assignee: The Johns Hopkins University
    Inventors: Charles W. Anderson, C. Brent Bargeron, Richard C. Benson, Micah A. Carlson, Allan B. Fraser, John D. Groopman, Harvey W. Ko, David R. Kohler, Terry E. Phillips, Paul T. Strickland
  • Patent number: 4859611
    Abstract: An affinity matrix and a method for the detection of low molecular weight compositions such as aflatoxins are provided utilizing specific monoclonal IgM antibody having an affinity constant not less than about 1.times.10.sup.9 liters per mole. Methods for the preparation and use of such affinity matrices are also given. The detection is rapid, accurate, reproducible, and allows for quantitative recovery of the composition of interest.
    Type: Grant
    Filed: January 21, 1986
    Date of Patent: August 22, 1989
    Assignees: Massachusetts Institute of Technology, Boston University
    Inventors: John D. Groopman, Gerald N. Wogan, Frederick G. Bargoot, Christopher Ferrari
  • Patent number: 4818687
    Abstract: An affinity matrix and a method for the detection of low molecular weight compositions such as aflatoxins are provided utilizing specific monoclonal IgM antibody having an affinity constant not less than about 1.times.10.sup.9 liters per mole. Methods for the preparation and use of such affinity matrices are also given. The detection is rapid, accurate, reproducible, and allows for quantitative recovery of the composition of interest.
    Type: Grant
    Filed: February 28, 1985
    Date of Patent: April 4, 1989
    Assignees: Massachusetts Institute of Technology, Boston University
    Inventors: John D. Groopman, Gerald N. Wogan