Patents by Inventor John D. Lord

John D. Lord has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210299706
    Abstract: Images depicting items in a waste flow on a conveyor belt are provided to two analysis systems. The first system processes images to decode digital watermark payload data found on certain of the items (e.g., plastic containers). This payload data is used to look up corresponding attribute metadata for the items in a database, such as the type of plastic in each item, and whether the item was used as a food container or not. The second analysis system can be a spectroscopy system that determines the type of plastic in each item by its absorption characteristics. When the two systems conflict in identifying the plastic type, a sorting logic processor applies a rule set to arbitrate the conflict and determine which plastic type is most likely. The item is then sorted into one of several different bins depending on a combination of the final plastic identification, and whether the item was used as a food container or not. A variety of other features and arrangements are also detailed.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 30, 2021
    Inventors: Tomas Filler, Vojtech Holub, Ravi K. Sharma, Tony F. Rodriguez, Osama M. Alattar, Adnan M. Alattar, John D. Lord, Brian Johnson, David Ruotolo, Geoffrey B. Rhoads, Hugh L. Brunk, Vahid Sedighianaraki
  • Patent number: 11127105
    Abstract: Signal processing devices and methods obtain an estimate of a geometric transform of an image signal, use it to obtain a measure of signal confidence of a reference signal in a sub-block of the image signal, and weight message estimates based on the signal confidence. The geometric transform is used as an approximation of the geometric distortion of an image after digital data is encoded in it, and it is used to compensate for this distortion to facilitate extracting embedded digital messages from the image. Due to the errors in the approximation, the signal confidence metric is determined and used to weight message symbol estimates extracted from the image.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: September 21, 2021
    Assignee: Digimarc Corporation
    Inventors: Ravi K. Sharma, John D. Lord, Robert G. Lyons, Osama M. Alattar, Jacob L. Boles
  • Publication number: 20210241607
    Abstract: Mobile phones and other portable devices are equipped with a variety of technologies by which existing functionality can be improved, and new functionality can be provided. Some aspects relate to visual search capabilities, and determining appropriate actions responsive to different image inputs. Others relate to processing of image data. Still others concern metadata generation, processing, and representation. Yet others concern user interface improvements. Other aspects relate to imaging architectures, in which a mobile phone's image sensor is one in a chain of stages that successively act on packetized instructions/data, to capture and later process imagery. Still other aspects relate to distribution of processing tasks between the mobile device and remote resources (“the cloud”). Elemental image processing (e.g., simple filtering and edge detection) can be performed on the mobile phone, while other operations can be referred out to remote service providers.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 5, 2021
    Inventors: Geoffrey B. Rhoads, Tony F. Rodriguez, John D. Lord, Nicole Rhoads, Brian T. MacIntosh, William Y. Conwell
  • Publication number: 20210192162
    Abstract: In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: January 6, 2021
    Publication date: June 24, 2021
    Inventors: Tony F. Rodriguez, Bruce L. Davis, Geoffrey B. Rhoads, John D. Lord, Alastair M. Reed, Eric D. Evans, Rebecca L. Gerlach, Yang Bai, John F. Stach, Tomas Filler, Marc G. Footen, Sean Calhoon, William Y. Conwell, Brian T. MacIntosh
  • Publication number: 20210157998
    Abstract: In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 27, 2021
    Inventors: Tony F. Rodriguez, Bruce L. Davis, Geoffrey B. Rhoads, John D. Lord, Alastair M. Reed, Eric D. Evans, Rebecca L. Gerlach, Yang Bai, John F. Stach, Tomas Filler, Marc G. Footen, Sean Calhoon, William Y. Conwell, Brian T. MacIntosh
  • Publication number: 20210142514
    Abstract: The geometric pose of a patch of watermark data is estimated based on the position of a similar, but non-identical, patch of information within a data structure. The information in the data structure corresponds to a tiled array of calibration patterns that is sampled along at least three non-parallel paths. In a particular embodiment, the calibration patterns are sampled so that edges are globally-curved, yet locally-flat. Use of such information in the data structure enables enhanced pose estimation, e.g., speeding up operation, enabling pose estimation from smaller patches of watermark signals, and/or enabling pose estimation from weaker watermark signals. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: November 18, 2020
    Publication date: May 13, 2021
    Inventors: Geoffrey B. Rhoads, Utkarsh Deshmukh, John D. Lord
  • Publication number: 20210058360
    Abstract: Content is identified using watermarking and/or other content recognition combined with contextual metadata, which facilitates identification and correlation with other content and metadata when it is posted to a network.
    Type: Application
    Filed: August 31, 2020
    Publication date: February 25, 2021
    Inventor: John D. Lord
  • Publication number: 20210042483
    Abstract: Signal detection and recognition employees coordinated illumination and capture of images under to facilitate extraction of a signal of interest. Pulsed illumination of different colors facilitates extraction of signals from color channels, as well as improved signal to noise ratio by combining signals of different color channels. The successive pulsing of different color illumination appears white to the user, yet facilitates signal detection, even for lower cost monochrome sensors, as in barcode scanning and other automatic identification equipment.
    Type: Application
    Filed: July 13, 2020
    Publication date: February 11, 2021
    Inventors: Jacob L. Boles, Alastair M. Reed, John D. Lord
  • Publication number: 20210004550
    Abstract: In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: March 17, 2017
    Publication date: January 7, 2021
    Inventors: Brian T. MacIntosh, Tony F. Rodriguez, Bruce L. Davis, Geoffrey B. Rhoads, John D. Lord, Alastair M. Reed, Eric D. Evans, Rebecca L. Gerlach, Yang Bai, John F. Stach, Tomas Filler, Marc G. Footen, Sean Calhoon, William Y. Conwell
  • Publication number: 20200380226
    Abstract: In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: June 5, 2020
    Publication date: December 3, 2020
    Inventors: Tony F. Rodriguez, Bruce L. Davis, Geoffrey B. Rhoads, John D. Lord, Alastair M. Reed, Eric D. Evans, Rebecca L. Gerlach, Yang Bai, John F. Stach, Tomas Filler, Marc G. Footen, Sean Calhoon, William Y. Conwell, Brian T. MacIntosh
  • Patent number: 10853968
    Abstract: The geometric pose of a patch of watermark data is estimated based on the position of a similar, but non-identical, patch of information within a data structure. The information in the data structure corresponds to a tiled array of calibration patterns that is sampled along at least three non-parallel paths. In a particular embodiment, the calibration patterns are sampled so that edges are globally-curved, yet locally-flat. Use of such information in the data structure enables enhanced pose estimation, e.g., speeding up operation, enabling pose estimation from smaller patches of watermark signals, and/or enabling pose estimation from weaker watermark signals. A great variety of other features and arrangements are also detailed.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: December 1, 2020
    Assignee: Digimarc Corporation
    Inventors: Geoffrey B. Rhoads, Utkarsh Deshmukh, John D. Lord
  • Publication number: 20200372228
    Abstract: In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: June 5, 2020
    Publication date: November 26, 2020
    Inventors: Tony F. Rodriguez, Bruce L. Davis, Geoffrey B. Rhoads, John D. Lord, Alastair M. Reed, Eric D. Evans, Rebecca L. Gerlach, Yang Bai, John F. Stach, Tomas Filler, Marc G. Footen, Sean Calhoon, William Y. Conwell, Brian T. MacIntosh
  • Publication number: 20200279084
    Abstract: In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 3, 2020
    Inventors: Bruce L. Davis, Tony F. Rodriguez, Geoffrey B. Rhoads, John D. Lord, Alastair M. Reed, Eric D. Evans, Rebecca L. Gerlach, Yang Bai, John F. Stach, Tomas Filler, Marc G. Footen, Sean C. Calhoon
  • Patent number: 10764230
    Abstract: A method for low latency audio watermark embedding buffers samples of an audio stream in a buffer, including previous blocks of audio samples in the audio stream. It computes a perceptual mask from the audio samples in the buffer, generates a watermark signal; and applies the perceptual mask to the watermark signal for the first block to produce a mask-applied watermark signal. It inserts the mask-applied watermark signal into the audio samples of the first block without waiting for a subsequent audio block of samples in the audio stream and outputs watermarked audio of the first block.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: September 1, 2020
    Assignee: Digimarc Corporation
    Inventor: John D. Lord
  • Patent number: 10713456
    Abstract: Signal detection and recognition employees coordinated illumination and capture of images under to facilitate extraction of a signal of interest. Pulsed illumination of different colors facilitates extraction of signals from color channels, as well as improved signal to noise ratio by combining signals of different color channels. The successive pulsing of different color illumination appears white to the user, yet facilitates signal detection, even for lower cost monochrome sensors, as in barcode scanning and other automatic identification equipment.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: July 14, 2020
    Assignee: Digimarc Corporation
    Inventors: Jacob L. Boles, Alastair M. Reed, John D. Lord
  • Patent number: 10664946
    Abstract: A phase deviation method determines an offset between a reference and suspect signal by analyzing a phase deviation surface created by computing a deviation metric for phase shift and then analyzing a surface formed from the deviation metrics for an array of offsets. The phase deviation method analyzes the deviation surface to determine an offset that minimizes phase deviation. This method is applied at increasing levels of detail to refine the determination of the offset.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: May 26, 2020
    Assignee: Digimarc Corporation
    Inventors: Ravi K. Sharma, John D. Lord
  • Patent number: 10593008
    Abstract: There are many advantages to implementing a watermark-based system using dedicated hardware, rather than using software executing on a general purpose processor. These include higher speed and lower power consumption. However, hardware implementations incur substantial design and development costs. Moreover, because each watermarking application has its own design constraints and parameters, it has not been cost-effective to develop a hardware chip design for each, since such chips would typically not be manufactured in volumes sufficient to bring per-unit costs down to an acceptable level. The present technology provides various techniques for making watermarking hardware adaptable, so that a single chip can serve multiple diverse watermark applications. By so-doing, the advantages of hardware implementation are made available where it was formerly cost-prohibitive, thereby enhancing operation of a great variety of watermark-based systems.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: March 17, 2020
    Assignee: Digimarc Corporation
    Inventors: Jacob L. Boles, Ravi K. Sharma, John D. Lord
  • Publication number: 20200065933
    Abstract: Signal processing devices and methods estimate transforms between signals using a least squares technique. From a seed set of transform candidates, a direct least squares method applies a seed transform candidate to a reference signal and then measures correlation between the transformed reference signal and a suspect signal. For each candidate, update coordinates of reference signal features are identified in the suspect signal and provided as input to a least squares method to compute an update to the transform candidate. The method iterates so long as the update of the transform provides a better correlation. At the end of the process, the method identifies a transform or set of top transforms based on a further analysis of correlation, as well as other results.
    Type: Application
    Filed: August 30, 2019
    Publication date: February 27, 2020
    Inventors: Ravi K. Sharma, John D. Lord, Robert G. Lyons
  • Patent number: 10498941
    Abstract: A spectral imaging device is configured to capture color images synchronized with controlled illumination from different color light emitting diodes. A processor in the device applies a coupling factor to sampled color images to convert sampled pixels into spectral channels corresponding to LED color and color filter. Multi-spectral spectricity vectors produced at pixel locations are used along with spatial information to classify objects, such as produce items.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: December 3, 2019
    Assignee: Digimarc Corporation
    Inventors: Geoffrey B. Rhoads, Hugh L. Brunk, John D. Lord
  • Publication number: 20190332840
    Abstract: The parameters of an optical code are optimized to achieve improved signal robustness, reliability, capacity and/or visual quality. An optimization program can determine spatial density, dot distance, dot size and signal component priority to optimize robustness. An optical code generator employs these parameters to produce an optical code at the desired spatial density and robustness. The optical code is merged into a host image, such as imagery, text and graphics of a package or label, or it may be printed by itself, e.g., on an otherwise blank label or carton. A great number of other features and arrangements are also detailed.
    Type: Application
    Filed: May 7, 2019
    Publication date: October 31, 2019
    Inventors: Ravi K. Sharma, Tomas Denemark, Brett A. Bradley, Geoffrey B. Rhoads, Eoin C. Sinclair, Vojtech Holub, Hugh L. Brunk, Trent J. Brundage, John F. Stach, John D. Lord, Joel R. Meyer, Tomas Filler, Ajith M. Kamath, Mark-Andrew Ray Tait, Kevin J. Hansonoda, Adnan M. Alattar