Patents by Inventor John D. Malloy

John D. Malloy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9773575
    Abstract: A nuclear reactor includes a reactor core comprising fissile material disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor. A containment compartment contains the radiological containment. A heat sink includes a chimney configured to develop an upward-flowing draft in response to heated fluid flowing into a lower portion of the chimney. A fluid conduit is arranged to receive fluid from the containment compartment and to discharge into the chimney. A filter may be provided, with the fluid conduit including a first fluid conduit arranged to receive fluid from the containment compartment and to discharge into an inlet of the filter, and a second fluid conduit arranged to receive fluid from an outlet of the filter and to discharge into the chimney. As the draft is developed passively, there is no need for a blower or pump configured to move fluid through the fluid conduit.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: September 26, 2017
    Assignee: BWXT MPower, Inc.
    Inventor: John D Malloy, III
  • Patent number: 9721685
    Abstract: Apparatuses for reducing or eliminating Type 1 LOCAs in a nuclear reactor vessel. A nuclear reactor including a nuclear reactor core comprising a fissile material, a pressure vessel containing the nuclear reactor core immersed in primary coolant disposed in the pressure vessel, and an isolation valve assembly including, an isolation valve vessel having a single open end with a flange, a spool piece having a first flange secured to a wall of the pressure vessel and a second flange secured to the flange of the isolation valve vessel, a fluid flow line passing through the spool piece to conduct fluid flow into or out of the first flange wherein a portion of the fluid flow line is disposed in the isolation valve vessel, and at least one valve disposed in the isolation valve vessel and operatively connected with the fluid flow line.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: August 1, 2017
    Assignee: BWXT mPower, Inc.
    Inventors: John D Malloy, III, Michael J Edwards
  • Patent number: 9583221
    Abstract: A pressurized water nuclear reactor (PWR) includes a pressure vessel having a lower portion containing a nuclear reactor core comprising a fissile material and an upper portion defining an internal pressurizer volume. A condenser is secured to, and optionally supported by, the upper portion of the pressure vessel. A condenser inlet is in fluid communication with the internal pressurizer volume. A heat sink is in fluid communication with the condenser such that the condenser operates as a passive heat exchanger to condense steam from the internal pressurizer volume into condensate while rejecting heat to the heat sink. A condenser outlet connects with the pressure vessel to return condensate to the pressure vessel. A single metal forging having a first end welded to the pressure vessel and a second end welded to the condenser inlet may provide the fluid communication between the condenser inlet and the internal pressurizer volume.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: February 28, 2017
    Assignee: BWXT Nuclear Energy, Inc.
    Inventors: John D. Malloy, Mathew W. Ales, Ronald C. Watson
  • Publication number: 20160180974
    Abstract: A valve assembly includes a flange connected to a vessel penetration of a reactor pressure vessel of a nuclear reactor. A valve is disposed inside the flange or protrudes from the flange into the vessel penetration. The valve includes a valve seat and a movable valve member positioned so that pressure inside the reactor pressure vessel urges the movable valve member against the valve seat to close the valve. The valve assembly further includes a plenum having an inlet via which the plenum can be pressurized to apply pressure to the movable valve member that urges the movable valve member away from the valve seat to open the valve. The plenum may be defined in part by a surface of the movable valve member. The valve assembly preferably does not include a valve actuator.
    Type: Application
    Filed: October 7, 2015
    Publication date: June 23, 2016
    Inventor: John D. Malloy, III
  • Publication number: 20150357060
    Abstract: A nuclear reactor includes a reactor core comprising fissile material disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor. A containment compartment contains the radiological containment. A heat sink includes a chimney configured to develop an upward-flowing draft in response to heated fluid flowing into a lower portion of the chimney. A fluid conduit is arranged to receive fluid from the containment compartment and to discharge into the chimney. A filter may be provided, with the fluid conduit including a first fluid conduit arranged to receive fluid from the containment compartment and to discharge into an inlet of the filter, and a second fluid conduit arranged to receive fluid from an outlet of the filter and to discharge into the chimney. As the draft is developed passively, there is no need for a blower or pump configured to move fluid through the fluid conduit.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 10, 2015
    Inventor: John D. MALLOY, III
  • Patent number: 9177674
    Abstract: A pressurized water nuclear reactor (PWR) includes a once through steam generator (OTSG) disposed in a generally cylindrical pressure vessel and a divider plate spaced apart from the open end of a central riser. A sealing portion of the pressure vessel and the divider plate define an integral pressurizer volume that is separated by the divider plate from the remaining interior volume of the pressure vessel. An internal control rod drive mechanism (CRDM) has all mechanical and electromagnetomotive components including at least a motor and a lead screw disposed inside the pressure vessel. Optionally CRDM units are staggered at two or more different levels such that no two neighboring CRDM units are at the same level. Internal primary coolant pumps have all mechanical and electromagnetomotive components including at least a motor and at least one impeller disposed inside the pressure vessel. Optionally, the pumps and/or CRDM are arranged below the OTSG.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: November 3, 2015
    Assignee: BWXT Nuclear Energy, Inc.
    Inventors: John D. Malloy, Mathew W. Ales
  • Publication number: 20150243377
    Abstract: A pressurized water nuclear reactor (PWR) includes a once through steam generator (OTSG) disposed in a generally cylindrical pressure vessel and a divider plate spaced apart from the open end of a central riser. A sealing portion of the pressure vessel and the divider plate define an integral pressurizer volume that is separated by the divider plate from the remaining interior volume of the pressure vessel. An internal control rod drive mechanism (CRDM) has all mechanical and electromagnetomotive components including at least a motor and a lead screw disposed inside the pressure vessel. Optionally CRDM units are staggered at two or more different levels such that no two neighboring CRDM units are at the same level. Internal primary coolant pumps have all mechanical and electromagnetomotive components including at least a motor and at least one impeller disposed inside the pressure vessel.
    Type: Application
    Filed: March 23, 2015
    Publication date: August 27, 2015
    Inventors: John D. Malloy, Mathew W. Ales
  • Publication number: 20150194225
    Abstract: A nuclear reactor is surrounded by a reactor radiological containment structure. Depressurization lines running from the reactor automatically vent the reactor to the containment structure or to a compartment in the containment structure when a low pressure condition exists in the reactor. The depressurization lines include biased-open passive valves and actively actuated isolation valves arranged in series.
    Type: Application
    Filed: June 5, 2014
    Publication date: July 9, 2015
    Inventors: Ronald C WATSON, John D MALLOY, III
  • Patent number: 8989336
    Abstract: A pressurized water nuclear reactor (PWR) includes a once through steam generator (OTSG) disposed in a generally cylindrical pressure vessel and a divider plate spaced apart from the open end of a central riser. A sealing portion of the pressure vessel and the divider plate define an integral pressurizer volume that is separated by the divider plate from the remaining interior volume of the pressure vessel. An internal control rod drive mechanism (CRDM) has all mechanical and electromagnetomotive components including at least a motor and a lead screw disposed inside the pressure vessel. Optionally CRDM units are staggered at two or more different levels such that no two neighboring CRDM units are at the same level. Internal primary coolant pumps have all mechanical and electromagnetomotive components including at least a motor and at least one impeller disposed inside the pressure vessel. Optionally, the pumps and/or CRDM are arranged below the OTSG.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: March 24, 2015
    Assignee: Babcock & Wilcox mPower, Inc.
    Inventors: John D. Malloy, Mathew W. Ales
  • Patent number: 8971477
    Abstract: An integral pressurized water nuclear reactor for the production of steam utilizing a helical coil steam generator, a plurality of internal circulation pumps, and an internal control rod drive mechanism structure.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: March 3, 2015
    Assignee: Babcock & Wilcox mPower, Inc.
    Inventors: Ted L. Thome, Mathew W. Ales, Billy E. Bingham, John D. Malloy
  • Patent number: 8867690
    Abstract: A nuclear reactor includes a pressure vessel and a nuclear reactor core disposed in the pressure vessel. A subterranean containment structure contains the nuclear reactor. An ultimate heat sink (UHS) pool is disposed at grade level, and an upper portion of the subterranean containment structure defines at least a portion of the bottom of the UHS pool. In some embodiments, the upper portion of the subterranean containment structure comprises an upper dome, which may protrude above the surface of the UHS pool to define an island surrounded by the UHS pool. In some embodiments, a condenser comprising a heat exchanger including hot and cold flow paths is disposed inside the subterranean containment structure; and cooling water lines operatively connect the condenser with the UHS pool.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: October 21, 2014
    Assignee: Babcock & Wilcox mPower, Inc.
    Inventors: Ronald C. Watson, John D. Malloy, Michael J. Edwards
  • Publication number: 20140270044
    Abstract: A nuclear reactor comprises a pressure vessel containing a nuclear reactor core. A reactor core cooling system comprises a standpipe including a plurality of orifices in fluid communication with a refueling water storage tank (RWST) to drain water from the RWST into the standpipe, and an injection line configured to drain water from the standpipe to the pressure vessel. In some embodiments the standpipe is disposed in the RWST, while in other embodiments the standpipe is disposed outside of the RWST and cross-connection pipes connect the plurality of orifices with the RWST. The reactor core cooling system may further comprise a valve configured to control flow through one orifice of the plurality of orifices in fluid communication with the RWST based on water level in the standpipe. The valve may comprise a float valve having its float disposed in the standpipe.
    Type: Application
    Filed: January 31, 2014
    Publication date: September 18, 2014
    Inventors: Ronald C. Watson, John D. Malloy, III
  • Patent number: 8781057
    Abstract: A pressurized water reactor (PWR) comprises a pressure vessel, a reactor core disposed in the pressure vessel, an integral or external pressurizer, primary coolant disposed in the pressure vessel and heated by operation of the reactor core, and a steam generator disposed in the pressure vessel and configured to convert secondary coolant in the form of feedwater into steam by heat transfer from the primary coolant heated by operation of the reactor core to secondary coolant in the steam generator. A controller is configured to perform a PWR control method including the operations of (i) adjusting one or more parameters of the PWR and (ii) adjusting a pressurizer water level setpoint based on a predicted direction and magnitude of change of a pressurizer water level of the PWR predicted to result from the adjusting (i).
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: July 15, 2014
    Assignee: Babcock & Wilcox mPower, Inc.
    Inventors: John D. Malloy, Billy E. Bingham
  • Patent number: 8638898
    Abstract: A pressurized water nuclear reactor (PWR) has an internal pressurizer volume containing a steam bubble and is surrounded by a containment structure. A condenser is disposed inside the containment structure and is operatively connected with an external heat sink disposed outside of the containment structure. A valve assembly operatively connects the PWR with the condenser responsive to an abnormal operation signal such that the condenser condenses steam from the steam bubble while rejecting heat to the external heat sink and returns the condensed water to the PWR. A quench tank contains water with dissolved neutron poison. A valved tank pressurizing path selectively connects the steam bubble to the quench tank to pressurize the quench tank, and a valved soluble poison delivery path selectively connects the quench tank to the PWR such that the quench tank under pressure from the steam bubble discharges water with dissolved neutron poison into the PWR.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: January 28, 2014
    Assignee: Babcock & Wilcox mPower, Inc.
    Inventor: John D. Malloy
  • Publication number: 20130272466
    Abstract: A valve for controlling flow of high pressure fluid to a CRDM hydraulic latching mechanism of a nuclear reactor core. The valve includes a valve body having an inlet for receiving fluid from a fluid source, an outlet, and a dump port for dumping fluid backflow. A valve member is movable within the valve body between a first position restricting flow between the outlet and the dump port such that high pressure fluid entering the valve body through the inlet exits the valve body through the outlet, and a second position whereat the dump port is in fluid communication with the outlet such that at least a portion of any backflow fluid flowing back into the valve body via the outlet exits the valve body via the dump port.
    Type: Application
    Filed: June 20, 2012
    Publication date: October 17, 2013
    Inventors: Michael J. Edwards, Matthew W. Ales, John D. Malloy, III
  • Publication number: 20130272478
    Abstract: A nuclear reactor comprises a nuclear reactor core disposed in a pressure vessel. An isolation valve protects a penetration through the pressure vessel. The isolation valve comprises: a mounting flange connecting with a mating flange of the pressure vessel; a valve seat formed into the mounting flange; and a valve member movable between an open position and a closed position sealing against the valve seat. The valve member is disposed inside the mounting flange or inside the mating flange of the pressure vessel. A biasing member operatively connects to the valve member to bias the valve member towards the open position. The bias keeps the valve member in the open position except when a differential fluid pressure across the isolation valve and directed outward from the pressure vessel exceeds a threshold pressure.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 17, 2013
    Inventors: John D. MALLOY, III, Matthew W. ALES, Michael J. EDWARDS, Ronald C. WATSON, Andrew C. WHITTEN
  • Publication number: 20130051511
    Abstract: A nuclear reactor includes a pressure vessel and a nuclear reactor core disposed in the pressure vessel. A subterranean containment structure contains the nuclear reactor. An ultimate heat sink (UHS) pool is disposed at grade level, and an upper portion of the subterranean containment structure defines at least a portion of the bottom of the UHS pool. In some embodiments, the upper portion of the subterranean containment structure comprises an upper dome, which may protrude above the surface of the UHS pool to define an island surrounded by the UHS pool. In some embodiments, a condenser comprising a heat exchanger including hot and cold flow paths is disposed inside the subterranean containment structure; and cooling water lines operatively connect the condenser with the UHS pool.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Inventors: Ronald C. Watson, John D. Malloy, Michael J. Edwards
  • Publication number: 20120321030
    Abstract: A pressurized water nuclear reactor (PWR) includes a pressure vessel having a lower portion containing a nuclear reactor core comprising a fissile material and an upper portion defining an internal pressurizer volume. A condenser is secured to, and optionally supported by, the upper portion of the pressure vessel. A condenser inlet is in fluid communication with the internal pressurizer volume. A heat sink is in fluid communication with the condenser such that the condenser operates as a passive heat exchanger to condense steam from the internal pressurizer volume into condensate while rejecting heat to the heat sink. A condenser outlet connects with the pressure vessel to return condensate to the pressure vessel. A single metal forging having a first end welded to the pressure vessel and a second end welded to the condenser inlet may provide the fluid communication between the condenser inlet and the internal pressurizer volume.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: John D. Malloy, Mathew W. Ales, Ronald C. Watson
  • Publication number: 20120263270
    Abstract: A pressurized water reactor (PWR) includes a cylindrical pressure vessel defining a sealed volume, a nuclear reactor core disposed in a lower portion of the cylindrical pressure vessel, one or more control rod drive mechanisms (CRDMs) disposed in the cylindrical pressure vessel above the nuclear reactor core, and an annular steam generator surrounding the nuclear reactor core and the CRDM. In some such PWR, a cylindrical riser is disposed coaxially inside the pressure vessel and inside the annular steam generator and surrounds the nuclear reactor core and the CRDM, and the steam generator is disposed coaxially inside the cylindrical pressure vessel in an annular volume defined by the cylindrical pressure vessel and the cylindrical riser. In other such PWR, the steam generator is disposed coaxially outside of and secured with the cylindrical pressure vessel.
    Type: Application
    Filed: April 13, 2011
    Publication date: October 18, 2012
    Inventors: John D. Malloy, Michael J. Edwards
  • Patent number: D713331
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: September 16, 2014
    Assignee: Babcock & Wilcox mPower, Inc.
    Inventors: James B. Inman, John D. Malloy, III, Matthew W. Ales, Michael J. Edwards, Scott J. Shargots, Andrew C. Whitten