Patents by Inventor John de Q. Walker

John de Q. Walker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7176082
    Abstract: A process for forming a capacitive structure that includes an upper layer having a first capacitor electrode section therein. A capacitor dielectric layer is formed adjacent the upper layer. The capacitor dielectric layer covers the first capacitor electrode section. A second capacitor electrode layer is formed adjacent the capacitor dielectric layer. The second capacitor electrode layer includes a second capacitor electrode section that at least partially covers the first capacitor electrode section, and which has an edge portion that extends beyond the underlying first capacitor electrode section. The capacitor dielectric layer being disposed between the first capacitor electrode section and the second capacitor electrode section. An upper dielectric layer is formed adjacent the second capacitor electrode section.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: February 13, 2007
    Assignee: LSI Logic Corporation
    Inventors: Todd A. Randazzo, Kenneth P. Fuchs, John de Q. Walker
  • Patent number: 6855586
    Abstract: As technology in the semiconductor industry advances, semiconductor devices decrease in size to become faster and less expensive per function. Smaller semiconductor devices, particularly MOSFETs, are increasingly sensitive to Electrostatic Discharge (ESD). ESD can either destroy or permanently damage a semiconductor device. Embodiments of the present invention assist in preventing ESD damage to semiconductor devices. An embodiment of the present invention utilizes a diode connected to the substrate terminal of a MOSFET. Under normal operation up to the maximum operating voltage, the diode and MOS devices are open and do not conduct. The diode triggers when an ESD pulse causes the reverse breakdown voltage of the diode to be exceeded. The resultant current switches a connected MOS device, operating in bipolar mode, to dissipate the damaging ESD pulse. The ESD pulse is shunted to ground, thereby avoiding damage to the rest of the device.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: February 15, 2005
    Assignee: LSI Logic Corporation
    Inventors: John de Q. Walker, Todd A. Randazzo
  • Patent number: 6822282
    Abstract: A process for forming a capacitive structure that includes an upper layer having a first capacitor electrode section therein. A capacitor dielectric layer is formed adjacent the upper layer. The capacitor dielectric layer covers the first capacitor electrode section. A second capacitor electrode layer is formed adjacent the capacitor dielectric layer. The second capacitor electrode layer includes a second capacitor electrode section that at least partially covers the first capacitor electrode section, and which has an edge portion that extends beyond the underlying first capacitor electrode section. The capacitor dielectric layer being disposed between the first capacitor electrode section and the second capacitor electrode section. An upper dielectric layer is formed adjacent the second capacitor electrode section.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: November 23, 2004
    Assignee: LSI Logic Corporation
    Inventors: Todd A. Randazzo, Kenneth P. Fuchs, John de Q. Walker
  • Publication number: 20040104436
    Abstract: As technology in the semiconductor industry advances, semiconductor devices decrease in size to become faster and less expensive per function. Smaller semiconductor devices, particularly MOSFETs, are increasingly sensitive to Electrostatic Discharge (ESD). ESD can either destroy or permanently damage a semiconductor device. Embodiments of the present invention assist in preventing ESD damage to semiconductor devices. An embodiment of the present invention utilizes a diode connected to the substrate terminal of a MOSFET. Under normal operation up to the maximum operating voltage, the diode and MOS devices are open and do not conduct. The diode triggers when an ESD pulse causes the reverse breakdown voltage of the diode to be exceeded. The resultant current switches a connected MOS device, operating in bipolar mode, to dissipate the damaging ESD pulse. The ESD pulse is shunted to ground, thereby avoiding damage to the rest of the device.
    Type: Application
    Filed: November 12, 2003
    Publication date: June 3, 2004
    Inventors: John de Q. Walker, Todd A. Randazzo
  • Patent number: 6710990
    Abstract: As technology in the semiconductor industry advances, semiconductor devices decrease in size to become faster and less expensive per function. Smaller semiconductor devices, particularly MOSFETs, are increasingly sensitive to Electrostatic Discharge (ESD). ESD can either destroy or permanently damage a semiconductor device. Embodiments of the present invention assist in preventing ESD damage to semiconductor devices. An embodiment of the present invention utilizes a diode connected to the substrate terminal of a MOSFET. Under normal operation up to the maximum operating voltage, the diode and MOS devices are open and do not conduct. The diode triggers when an ESD pulse causes the reverse breakdown voltage of the diode to be exceeded. The resultant current switches a connected MOS device, operating in bipolar mode, to dissipate the damaging ESD pulse. The ESD pulse is shunted to ground, thereby avoiding damage to the rest of the device.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: March 23, 2004
    Assignee: LSI Logic Corporation
    Inventors: John de Q. Walker, Todd A. Randazzo
  • Publication number: 20030176035
    Abstract: A process for forming a capacitive structure that includes an upper layer having a first capacitor electrode section therein. A capacitor dielectric layer is formed adjacent the upper layer. The capacitor dielectric layer covers the first capacitor electrode section. A second capacitor electrode layer is formed adjacent the capacitor dielectric layer. The second capacitor electrode layer includes a second capacitor electrode section that at least partially covers the first capacitor electrode section, and which has an edge portion that extends beyond the underlying first capacitor electrode section. The capacitor dielectric layer being disposed between the first capacitor electrode section and the second capacitor electrode section. An upper dielectric layer is formed adjacent the second capacitor electrode section.
    Type: Application
    Filed: April 8, 2003
    Publication date: September 18, 2003
    Applicant: LSI Logic Corporation
    Inventors: Todd A. Randazzo, Kenneth P. Fuchs, John de Q. Walker
  • Publication number: 20030137789
    Abstract: As technology in the semiconductor industry advances, semiconductor devices decrease in size to become faster and less expensive per function. Smaller semiconductor devices, particularly MOSFETs, are increasingly sensitive to Electrostatic Discharge (ESD). ESD can either destroy or permanently damage a semiconductor device. Embodiments of the present invention assist in preventing ESD damage to semiconductor devices. An embodiment of the present invention utilizes a diode connected to the substrate terminal of a MOSFET. Under normal operation up to the maximum operating voltage, the diode and MOS devices are open and do not conduct. The diode triggers when an ESD pulse causes the reverse breakdown voltage of the diode to be exceeded. The resultant current switches a connected MOS device, operating in bipolar mode, to dissipate the damaging ESD pulse. The ESD pulse is shunted to ground, thereby avoiding damage to the rest of the device.
    Type: Application
    Filed: January 22, 2002
    Publication date: July 24, 2003
    Inventors: John de Q. Walker, Todd A. Randazzo
  • Patent number: 6596579
    Abstract: A process for forming a capacitive structure that includes an upper layer having a first capacitor electrode section therein. A capacitor dielectric layer is formed adjacent the upper layer. The capacitor dielectric layer covers the first capacitor electrode section. A second capacitor electrode layer is formed adjacent the capacitor dielectric layer. The second capacitor electrode layer includes a second capacitor electrode section that at least partially covers the first capacitor electrode section, and which has an edge portion that extends beyond the underlying first capacitor electrode section. The capacitor dielectric layer being disposed between the first capacitor electrode section and the second capacitor electrode section. An upper dielectric layer is formed adjacent the second capacitor electrode section.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: July 22, 2003
    Assignee: LSI Logic Corporation
    Inventors: Todd A. Randazzo, Kenneth P. Fuchs, John de Q. Walker