Patents by Inventor John E. Potts

John E. Potts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140106267
    Abstract: A method of forming an image having multiple phases is disclosed herein. The method includes forming exposed and unexposed areas, the exposed areas comprising a first polymer network exhibiting first and second phases that are chemically connected and have different refractive indices, the first phase being continuous, and the second phase comprising a plurality of structures dispersed within the first phase, and the unexposed areas comprising a second polymer network comprising third and fourth phases that are chemically connected and have different refractive indices, the third phase being continuous, and the fourth phase comprising a plurality of structures dispersed within the third phase. The first and second polymer networks are chemically connected, and morphology formed by the first and second phases is different than that formed by the third and fourth phases.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 17, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Mieczyslaw H. Mazurek, Raymond P. Johnston, John E. Potts, Marc D. Radcliffe, Kevin R. Schaffer, Audrey A. Sherman, Wendi J. Winkler
  • Patent number: 8637226
    Abstract: A method of forming an image having multiple phases is disclosed herein. The method includes forming exposed and unexposed areas, the exposed areas comprising a first polymer network exhibiting first and second phases that are chemically connected and have different refractive indices, the first phase being continuous, and the second phase comprising a plurality of structures dispersed within the first phase, and the unexposed areas comprising a second polymer network comprising third and fourth phases that are chemically connected and have different refractive indices, the third phase being continuous, and the fourth phase comprising a plurality of structures dispersed within the third phase. The first and second polymer networks are chemically connected, and morphology formed by the first and second phases is different than that formed by the third and fourth phases.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: January 28, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Mieczyslaw H. Mazurek, Raymond P. Johnston, John E. Potts, Marc D. Radcliffe, Kevin R. Schaffer, Audrey A. Sherman, Wendi J. Winkler
  • Patent number: 8530118
    Abstract: Methods of fabricating optical elements that are encapsulated in monolithic matrices. The present invention is based, at least in one aspect, upon the concept of using multiphoton, multi-step photocuring to fabricate encapsulated optical element(s) within a body of a photopolymerizable composition. Imagewise, multiphoton polymerization techniques are used to form the optical element. The body surrounding the optical element is also photohardened by blanket irradiation and/or thermal curing to help form an encapsulating structure. In addition, the composition also incorporates one or more other, non-diffusing binder components that may be thermosetting or thermoplastic. The end result is an encapsulated structure with good hardness, durability, dimensional stability, resilience, and toughness.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: September 10, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Robert J. DeVoe, Catherine A. Leatherdale, Jeffrey M. Florczak, Patrick R. Fleming, John E. Potts
  • Patent number: 8343633
    Abstract: A method of modifying light is disclosed and includes: providing an optical element having an oriented polymer network of a silicone(meth)acrylate copolymer and exhibiting a first phase and a second phase, the first phase and the second phase being chemically connected and having different refractive indices, the first phase being continuous, and the second phase comprising a plurality of structures dispersed within the first phase; illuminating the optical element with light from a light source; and detecting polarized or directionally diffused light transmitted by the optical element. Optical elements including the polymer network and a variety of additional layers are also disclosed, as are optical devices such as prisms, display panels, lenses, and the like.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: January 1, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Mieczyslaw H. Mazurek, Robert L. Brott, David J. Kinning, Yufeng Liu, John E. Potts, Kevin R. Schaffer, Audrey A. Sherman, Wendi J. Winkler
  • Patent number: 8298032
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED lighting device such as solid state lighting devices or backlight units. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: October 30, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: John E. Potts, Fred B. McCormick, Martin B. Wolk, Jun-Ying Zhang, Terry L. Smith, James M. Battiato, Ding Wang, William A. Tolbert, Mark A. Roehrig, Clark I. Bright
  • Publication number: 20120135207
    Abstract: A method of forming an image having multiple phases is disclosed herein. The method includes forming exposed and unexposed areas, the exposed areas comprising a first polymer network exhibiting first and second phases that are chemically connected and have different refractive indices, the first phase being continuous, and the second phase comprising a plurality of structures dispersed within the first phase, and the unexposed areas comprising a second polymer network comprising third and fourth phases that are chemically connected and have different refractive indices, the third phase being continuous, and the fourth phase comprising a plurality of structures dispersed within the third phase. The first and second polymer networks are chemically connected, and morphology formed by the first and second phases is different than that formed by the third and fourth phases.
    Type: Application
    Filed: February 8, 2012
    Publication date: May 31, 2012
    Inventors: Mieczyslaw H. Mazurek, Raymond P. Johnston, John E. Potts, Marc D. Radcliffe, Kevin R. Schaffer, Audrey A. Sherman, Wendi J. Winkler
  • Patent number: 8179034
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED lighting device such as solid state lighting devices or backlight units. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: May 15, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: John E. Potts, Fred B. McCormick, Martin B. Wolk, Jun-Ying Zhang, Terry L. Smith, James M. Battiato, Ding Wang, William A. Tolbert, Mark A. Roehrig, Clark I. Bright
  • Patent number: 8133644
    Abstract: A method of forming an image having multiple phases is disclosed herein. The method includes forming exposed and unexposed areas, the exposed areas comprising a first polymer network exhibiting first and second phases that are chemically connected and have different refractive indices, the first phase being continuous, and the second phase comprising a plurality of structures dispersed within the first phase, and the unexposed areas comprising a second polymer network comprising third and fourth phases that are chemically connected and have different refractive indices, the third phase being continuous, and the fourth phase comprising a plurality of structures dispersed within the third phase. The first and second polymer networks are chemically connected, and morphology formed by the first and second phases is different than that formed by the third and fourth phases.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 13, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Mieczyslaw H. Mazurek, Raymond P. Johnston, John E. Potts, Marc D. Radcliffe, Kevin R. Schaffer, Audrey A. Sherman, Wendi J. Winkler
  • Patent number: 8089681
    Abstract: An electrode is described. The electrode includes a substrate having a first and a second surface, a conductive layer, multilayer structure having alternating layers of at least one polymer layer and at least one electroactive chemical bound nanoparticle layer. The conductive layer is disposed on the second surface of the substrate, and the multilayer structure is disposed on the conductive layer.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: January 3, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Junjun Wu, John E. Potts, Jung-Sheng Wu
  • Publication number: 20110261436
    Abstract: A method of modifying light is disclosed and includes: providing an optical element having an oriented polymer network of a silicone (meth)acrylate copolymer and exhibiting a first phase and a second phase, the first phase and the second phase being chemically connected and having different refractive indices, the first phase being continuous, and the second phase comprising a plurality of structures dispersed within the first phase; illuminating the optical element with light from a light source; and detecting polarized or directionally diffused light transmitted by the optical element. Optical elements including the polymer network and a variety of additional layers are also disclosed, as are optical devices such as prisms, display panels, lenses, and the like.
    Type: Application
    Filed: July 6, 2011
    Publication date: October 27, 2011
    Inventors: Mieczyslaw H. Mazurek, Robert L. Brott, David J. Kinning, Yufeng Liu, John E. Potts, Kevin R. Schaffer, Audrey A. Sherman, Wendi J. Winkler
  • Publication number: 20110229992
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED lighting device such as solid state lighting devices or backlight units. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Application
    Filed: June 1, 2011
    Publication date: September 22, 2011
    Inventors: John E. Potts, Fred B. McCormick, Martin B. Wolk, Jun-Ying Zhang, Terry L. Smith, James M. Battiato, Ding Wang, William A. Tolbert, Mark A. Roehrig, Clark I. Bright
  • Patent number: 7998587
    Abstract: A method of modifying light is disclosed and includes: providing an optical element having an oriented polymer network of a silicone (meth)acrylate copolymer and exhibiting a first phase and a second phase, the first phase and the second phase being chemically connected and having different refractive indices, the first phase being continuous, and the second phase comprising a plurality of structures dispersed within the first phase; illuminating the optical element with light from a light source; and detecting polarized or directionally diffused light transmitted by the optical element. Optical elements including the polymer network and a variety of additional layers are also disclosed, as are optical devices such as prisms, display panels, lenses, and the like.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 16, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Mieczyslaw H. Mazurek, Robert L. Brott, David J. Kinning, Yufeng Liu, John E. Potts, Kevin R. Schaffer, Audrey A. Sherman, Wendi J. Winkler
  • Patent number: 7940447
    Abstract: An electrode is described. The electrode has a substrate having a first and a second surface; a conductive layer; an electroactive layer that includes nanoparticles having an average size from 5 nm to 30 nm; at least one electroactive chemical and at least one organic binder material. The electroactive chemical binds to the surface of the nanoparticles. The conductive layer is disposed on the second surface of the substrate, and the electroactive layer is disposed on the conductive layer. Also described are electrochromic articles including the electrode, and a coating composition that can be utilized to fabricate the electrode.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: May 10, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Junjun Wu, John E. Potts, Clinton P. Waller, Jr., Brian T. Weber, Jung-Sheng Wu, Michael W. Lofgren
  • Publication number: 20100255183
    Abstract: An electrode is described. The electrode includes a substrate having a first and a second surface, a conductive layer, multilayer structure having alternating layers of at least one polymer layer and at least one electroactive chemical bound nanoparticle layer. The conductive layer is disposed on the second surface of the substrate, and the multilayer structure is disposed on the conductive layer.
    Type: Application
    Filed: June 14, 2010
    Publication date: October 7, 2010
    Inventors: JunJun Wu, John E. Potts, Jung-Sheng Wu
  • Patent number: 7764416
    Abstract: An electrode is described. The electrode includes a substrate having a first and a second surface, a conductive layer, multilayer structure having alternating layers of at least one polymer layer and at least one electroactive chemical bound nanoparticle layer. The conductive layer is disposed on the second surface of the substrate, and the multilayer structure is disposed on the conductive layer.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: July 27, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Junjun Wu, John E. Potts, Jung-Sheng Wu
  • Patent number: 7759042
    Abstract: Laser induced thermal imaging (LITI) donor films, and methods of preparing them, having a substrate, a light-to-heat conversion layer, and a pattern-directing layer. The pattern-directing layer can include patterns of self-assembled monolayer regions, hydrophilic and hydrophobic regions, positively or negatively charged regions, or a series of raised or recessed features. It can also be used to generate charge patterns and magnetic patterns. The pattern-directing layer causes patterning of a transfer layer applied to it, resulting in a templated transfer layer. When imaged, the LITI donor film transfers at least a portion of the templated transfer layer to a permanent receptor while maintaining the pattern substantially intact in the transferred portion.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: July 20, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Martin B. Wolk, John E. Potts, Yingbo Li, Khanh T. Huynh
  • Publication number: 20100027956
    Abstract: Methods of fabricating optical elements that are encapsulated in monolithic matrices. The present invention is based, at least in one aspect, upon the concept of using multiphoton, multi-step photocuring to fabricate encapsulated optical element(s) within a body of a photopolymerizable composition. Imagewise, multiphoton polymerization techniques are used to form the optical element. The body surrounding the optical element is also photohardened by blanket irradiation and/or thermal curing to help form an encapsulating structure. In addition, the composition also incorporates one or more other, non-diffusing binder components that may be thermosetting or thermoplastic. The end result is an encapsulated structure with good hardness, durability, dimensional stability, resilience, and toughness.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 4, 2010
    Inventors: Robert J. DeVoe, Catherine A. Leatherdale, Jeffrey M. Florczak, Patrick R. Fleming, John E. Potts
  • Publication number: 20090322219
    Abstract: Laser induced thermal imaging (LITI) donor films, and methods of preparing them, having a substrate, a light-to-heat conversion layer, and a pattern-directing layer. The pattern-directing layer can include patterns of self-assembled monolayer regions, hydrophilic and hydrophobic regions, positively or negatively charged regions, or a series of raised or recessed features. It can also be used to generate charge patterns and magnetic patterns. The pattern-directing layer causes patterning of a transfer layer applied to it, resulting in a templated transfer layer. When imaged, the LITI donor film transfers at least a portion of the templated transfer layer to a permanent receptor while maintaining the pattern substantially intact in the transferred portion.
    Type: Application
    Filed: September 11, 2009
    Publication date: December 31, 2009
    Inventors: Martin B. Wolk, John E. Potts, Yingbo Li, Khanh T. Huynh
  • Publication number: 20090262348
    Abstract: A method of modifying light is disclosed and includes: providing an optical element having an oriented polymer network of a silicone (meth)acrylate copolymer and exhibiting a first phase and a second phase, the first phase and the second phase being chemically connected and having different refractive indices, the first phase being continuous, and the second phase comprising a plurality of structures dispersed within the first phase; illuminating the optical element with light from a light source; and detecting polarized or directionally diffused light transmitted by the optical element. Optical elements including the polymer network and a variety of additional layers are also disclosed, as are optical devices such as prisms, display panels, lenses, and the like.
    Type: Application
    Filed: October 31, 2007
    Publication date: October 22, 2009
    Inventors: Mieczyslaw H. Mazurek, Robert L. Brott, David J. Kinning, Yufeng Liu, John E. Potts, Kevin R. Schaffer, Audrey A. Sherman, Wendi J. Winkler
  • Patent number: 7604916
    Abstract: Laser induced thermal imaging (LITI) donor films, and methods of preparing them, having a substrate, a light-to-heat conversion layer, and a pattern-directing layer. The pattern-directing layer can include patterns of self-assembled monolayer regions, hydrophilic and hydrophobic regions, positively or negatively charged regions, or a series of raised or recessed features. It can also be used to generate charge patterns and magnetic patterns. The pattern-directing layer causes patterning of a transfer layer applied to it, resulting in a templated transfer layer. When imaged, the LITI donor film transfers at least a portion of the templated transfer layer to a permanent receptor while maintaining the pattern substantially intact in the transferred portion.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: October 20, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Martin B. Wolk, John E. Potts, Yingbo Li, Khanh T. Huynh