Patents by Inventor John E. Rosenstengel

John E. Rosenstengel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180285578
    Abstract: Embodiments of the present invention provide a method to temporally isolate data accessed by a computing device so that the data accessed by the computing device is limited to a single set of data. The method includes removing any data that is accessed by the computing device when operating in different modes so that the data is inaccessible by the computing device when operating in the mode. The method also includes switching to the mode after the data associated with the modes different from the mode have been removed. The method also includes operating in the mode based on a plurality of rules associated with the security policy in temporal isolation from any other mode associated with the computing device. The computing device is limited to operating in the mode and is prevented from accessing any data that is distinct from the single set of data of the mode.
    Type: Application
    Filed: June 4, 2018
    Publication date: October 4, 2018
    Inventors: Eric Ridvan Üner, Michael J. Collins, Kent H. Hunter, John E. Rosenstengel, James E. Sabin, Kevin S. Woods
  • Patent number: 9990505
    Abstract: Embodiments of the present invention provide a method to temporally isolate data accessed by a computing device so that the data accessed by the computing device is limited to a single set of data. The method includes removing any data that is accessed by the computing device when operating in different modes so that the data is inaccessible by the computing device when operating in the mode. The method also includes switching to the mode after the data associated with the modes different from the mode have been removed. The method also includes operating in the mode based on a plurality of rules associated with the security policy in temporal isolation from any other mode associated with the computing device. The computing device is limited to operating in the mode and is prevented from accessing any data that is distinct from the single set of data of the mode.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: June 5, 2018
    Assignee: Redwall Technologies, LLC
    Inventors: Eric Ridvan Üner, Michael J. Collins, Kent H. Hunter, John E. Rosenstengel, James E. Sabin, Kevin S. Woods
  • Publication number: 20160048693
    Abstract: Embodiments of the present invention provide a method to temporally isolate data accessed by a computing device so that the data accessed by the computing device is limited to a single set of data. The method includes removing any data that is accessed by the computing device when operating in different modes so that the data is inaccessible by the computing device when operating in the mode. The method also includes switching to the mode after the data associated with the modes different from the mode have been removed. The method also includes operating in the mode based on a plurality of rules associated with the security policy in temporal isolation from any other mode associated with the computing device. The computing device is limited to operating in the mode and is prevented from accessing any data that is distinct from the single set of data of the mode.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 18, 2016
    Inventors: Eric Ridvan Üner, Michael J. Collins, Kent H. Hunter, John E. Rosenstengel, James E. Sabin, Kevin S. Woods
  • Patent number: 8340388
    Abstract: Systems, computer-readable media, methods, and a medical imaging apparatus for improving the automated detection of suspicious regions of interest in x-ray images of anatomical organs under study are disclosed. Noise effects in x-ray images are suppressed to predetermined levels by filtering the original x-ray images and then combining the original images with the filtered images in such a way that the predetermined noise value is met. The resulting modified x-ray images then may be analyzed to automatically detect suspected breast microcalcifications or other suspicious regions of interest. In addition, three-dimensional digital images of anatomical organs may be computed from a plurality of such modified x-ray images of an anatomical organ taken from different angles, as in CT imaging, and the three-dimensional digital images may be processed to automatically detect suspicious regions of interest.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: December 25, 2012
    Assignee: iCad, Inc.
    Inventor: John E. Rosenstengel
  • Publication number: 20110103673
    Abstract: Systems, computer-readable media, methods, and a medical imaging apparatus for improving the automated detection of suspicious regions of interest in x-ray images of anatomical organs under study are disclosed. Noise effects in x-ray images are suppressed to predetermined levels by filtering the original x-ray images and then combining the original images with the filtered images in such a way that the predetermined noise value is met. The resulting modified x-ray images then may be analyzed to automatically detect suspected breast microcalcifications or other suspicious regions of interest. In addition, three-dimensional digital images of anatomical organs may be computed from a plurality of such modified x-ray images of an anatomical organ taken from different angles, as in CT imaging, and the three-dimensional digital images may be processed to automatically detect suspicious regions of interest.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Inventor: John E. Rosenstengel
  • Patent number: 6650766
    Abstract: A method and system for detecting and displaying clustered microcalcifications in a digital mammogram, wherein a single digital mammogram is first automatically cropped to a breast area sub-image which is then processed by means of an optimized Difference of Gaussians filter to enhance the appearance of potential microcalcifications in the sub-image. The potential microcalcifications are thresholded, clusters are detected, features are computed for the detected clusters, and the clusters are classified as either suspicious or not suspicious by means of a neural network. Thresholding is preferably by sloping local thresholding, but may also be performed by global and dual-local thresholding. The locations in the original digital mammogram of the suspicious detected clustered microcalcifications are indicated. Parameters for use in the detection and thresholding portions of the system are computer-optimized by means of a genetic algorithm.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: November 18, 2003
    Assignee: Qualia Computing, Inc.
    Inventors: Steven K. Rogers, Philip Amburn, Telford S. Berkey, Randy P. Broussard, Martin P. DeSimio, Jeffrey W. Hoffmeister, Edward M. Ochoa, Thomas F. Rathbun, John E. Rosenstengel
  • Patent number: 6556699
    Abstract: A method and system for detecting and displaying clustered microcalcifications in a digital mammogram, wherein a single digital mammogram is first automatically cropped to a breast area sub-image which is then processed by means of an optimized Difference of Gaussians filter to enhance the appearance of potential microcalcifications in the sub-image. The potential microcalcifications are thresholded, clusters are detected, features are computed for the detected clusters, and the clusters are classified as either suspicious or not suspicious by means of a neural network. Thresholding is preferably by sloping local thresholding, but may also be performed by global and dual-local thresholding. The locations in the original digital mammogram of the suspicious detected clustered microcalcifications are indicated. Parameters for use in the detection and thresholding portions of the system are computer-optimized by means of a genetic algorithm.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: April 29, 2003
    Assignee: Qualia Computing, Inc.
    Inventors: Steven K. Rogers, Philip Amburn, Telford S. Berkey, Randy P. Broussard, Martin P. DeSimio, Jeffrey W. Hoffmeister, Edward M. Ochoa, Thomas P. Rathbun, John E. Rosenstengel
  • Publication number: 20020081006
    Abstract: A method and system for detecting and displaying clustered microcalcifications in a digital mammogram, wherein a single digital mammogram is first automatically cropped to a breast area sub-image which is then processed by means of an optimized Difference of Gaussians filter to enhance the appearance of potential microcalcifications in the sub-image. The potential microcalcifications are thresholded, clusters are detected, features are computed for the detected clusters, and the clusters are classified as either suspicious or not suspicious by means of a neural network. Thresholding is preferably by sloping local thresholding, but may also be performed by global and dual-local thresholding. The locations in the original digital mammogram of the suspicious detected clustered microcalcifications are indicated. Parameters for use in the detection and thresholding portions of the system are computer-optimized by means of a genetic algorithm.
    Type: Application
    Filed: August 24, 2001
    Publication date: June 27, 2002
    Inventors: Steven K. Rogers, Philip Amburn, Telford S. Berkey, Randy P. Broussard, Martin P. DeSino, Jeffrey W. Hoffmeister, Edward M. Ochoa, Thomas P. Rathbun, John E. Rosenstengel
  • Patent number: 6389157
    Abstract: A method and system for detecting and displaying clustered microcalcifications in a digital mammogram, wherein a single digital mammogram is first automatically cropped to a breast area sub-image which is then processed by means of an optimized Difference of Gaussians filter to enhance the appearance of potential microcalcifications in the sub-image. The potential microcalcifications are thresholded, clusters are detected, features are computed for the detected clusters, and the clusters are classified as either suspicious or not suspicious by means of a neural network. Thresholding is preferably by sloping local thresholding, but may also be performed by global and dual-local thresholding. The locations in the original digital mammogram of the suspicious detected clustered microcalcifications are indicated. Parameters for use in the detection and thresholding portions of the system are computer-optimized by means of a genetic algorithm.
    Type: Grant
    Filed: January 11, 2001
    Date of Patent: May 14, 2002
    Assignee: Qualia Computing, Inc.
    Inventors: Steven K. Rogers, Randy P. Broussard, Edward M. Ochoa, Thomas F. Rathbun, John E. Rosenstengel
  • Patent number: 6205236
    Abstract: A method and system for detecting and displaying clustered microcalcifications in a digital mammogram, wherein a single digital mammogram is first automatically cropped to a breast area sub-image which is then processed by means of an optimized Difference of Gaussians filter to enhance the appearance of potential microcalcifications in the sub-image. The potential microcalcifications are thresholded clusters are detected, features are computed for the detected clusters, and the clusters are classified as either suspicious or not suspicious by means of a neural network. Thresholding is preferably by sloping local thresholding but may also be performed by global and dual-local thresholding. The locations in the original digital mammogram of the suspicious detected clustered microcalcifications are indicated. Parameters for use in the detection and thresholding portions of the system are computer-optimized by means of a genetic algorithm.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: March 20, 2001
    Assignee: Qualia Computing, Inc.
    Inventors: Steven K. Rogers, Philip Amburn, Telford S. Berkey, Randy P. Broussard, Martin P. DeSimio, Jeffrey W. Hoffmeister, Edward M. Ochoa, Thomas F. Rathbun, John E. Rosenstengel
  • Patent number: 6167146
    Abstract: A method and system for detecting and displaying clustered microcalcifications in a digital mammogram, wherein a single digital mammogram is first automatically cropped to a breast area sub-image which is then processed by means of an optimized Difference of Gaussians filter to enhance the appearance of potential microcalcifications in the sub-image. The potential microcalcifications are thresholded, clusters are detected, features are computed for the detected clusters, and the clusters are classified as either suspicious or not suspicious by means of a neural network. Thresholding is preferably by sloping local thresholding, but may also be performed by global and dual-local thresholding. The locations in the original digital mammogram of the suspicious detected clustered microcalcifications are indicated. Parameters for use in the detection and thresholding portions of the system are computer-optimized by means of a genetic algorithm.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: December 26, 2000
    Assignee: Qualia Computing, Inc.
    Inventors: Steven K. Rogers, Philip Amburn, Telford S. Berkey, Randy P. Broussard, Martin P. Desimio, Jeffrey W. Hoffmeister, Edward M. Ochoa, Thomas F. Rathbun, John E. Rosenstengel
  • Patent number: 6115488
    Abstract: A method and system for detecting and displaying clustered microcalcifications in a digital mammogram, wherein a single digital mammogram is first automatically cropped to a breast area sub-image which is then processed by means of an optimized Difference of Gaussians filter to enhance the appearance of potential microcalcifications in the sub-image. The potential microcalcifications are thresholded, clusters are detected, features are computed for the detected clusters, and the clusters are classified as either suspicious or not suspicious by means of a neural network. Thresholding is preferably by sloping local thresholding, but may also be performed by global and dual-local thresholding. The locations in the original digital mammogram of the suspicious detected clustered microcalcifications are indicated. Parameters for use in the detection and thresholding portions of the system are computer-optimized by means of a genetic algorithm.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: September 5, 2000
    Assignee: Qualia Computing, Inc.
    Inventors: Steven K. Rogers, Philip Amburn, Telford S. Berkey, Randy P. Broussard, Martin P. Desimio, Jeffrey W. Hoffmeister, Edward M. Ochoa, Thomas P. Rathbun, John E. Rosenstengel
  • Patent number: 6091841
    Abstract: A method and system for detecting and displaying clustered microcalcifications in a digital mammogram, wherein a single digital mammogram is first automatically cropped to a breast area sub-image which is then processed by means of an optimized Difference of Gaussians filter to enhance the appearance of potential microcalcifications in the sub-image. The potential microcalcifications are thresholded, clusters are detected, features are computed for the detected clusters, and the clusters are classified as either suspicious or not suspicious by means of a neural network. Thresholding is preferably by sloping local thresholding, but may also be performed by global and dual-local thresholding. The locations in the original digital mammogram of the suspicious detected clustered microcalcifications are indicated. Parameters for use in the detection and thresholding portions of the system are computer-optimized by means of a genetic algorithm.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: July 18, 2000
    Assignee: Qualia Computing, Inc.
    Inventors: Steven K. Rogers, Philip Amburn, Telford S. Berkey, Randy P. Broussard, Martin P. DeSimio, Jeffrey W. Hoffmeister, Edward M. Ochoa, Thomas F. Rathbun, John E. Rosenstengel
  • Patent number: 5999639
    Abstract: A method and system for detecting and displaying clustered microcalcifications in a digital mammogram, wherein a single digital mammogram is first automatically cropped to a breast area sub-image which is then processed by means of an optimized Difference of Gaussians filter to enhance the appearance of potential microcalcifications in the sub-image. The potential microcalcifications are thresholded, clusters are detected, features are computed for the detected clusters, and the clusters are classified as either suspicious or not suspicious by means of a neural network. Thresholding is preferably by sloping local thresholding, but may also be performed by global and dual-local thresholding. The locations in the original digital mammogram of the suspicious detected clustered microcalcifications are indicated. Parameters for use in the detection and thresholding portions of the system are computer-optimized by means of a genetic algorithm.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: December 7, 1999
    Assignee: Qualia Computing, Inc.
    Inventors: Steven K. Rogers, Philip Amburn, Telford S. Berkey, Randy P. Broussard, Martin P. DeSimio, Jeffrey W. Hoffmeister, Edward M. Ochoa, Thomas P. Rathbun, John E. Rosenstengel