Patents by Inventor John F. Bingert

John F. Bingert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6451742
    Abstract: A high temperature superconducting composite conductor is provided including a high temperature superconducting material surrounded by a noble metal layer, the high temperature superconducting composite conductor characterized as having a fill factor of greater than about 40. Additionally, the conductor can be further characterized as containing multiple cores of high temperature superconducting material surrounded by a noble metal layer, said multiple cores characterized as having substantially uniform geometry in the cross-sectional dimensions. Processes of forming such a high temperature superconducting composite conductor are also provided.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: September 17, 2002
    Assignee: The Regents of the University of California
    Inventors: Terry G. Holesinger, John F. Bingert
  • Publication number: 20020049143
    Abstract: An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.
    Type: Application
    Filed: September 18, 2001
    Publication date: April 25, 2002
    Inventors: Peter R. Roberts, William Michels, John F. Bingert
  • Patent number: 6300285
    Abstract: An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: October 9, 2001
    Assignee: The Regents of the University of California
    Inventors: Peter R. Roberts, William Michels, John F. Bingert
  • Patent number: 6195870
    Abstract: Superconductor tapes are annealed under uniaxial pressure, such a compressive annealing yielding significant improvement in the resultant critical current density. This thermomechanical processing technique obtains improved critical currents with fewer processing steps.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: March 6, 2001
    Assignee: The Regents of the University of California
    Inventors: Yuntian T. Zhu, Patrick S. Baldonado, John F. Bingert, Terry G. Holesinger, Dean E. Peterson
  • Patent number: 6027585
    Abstract: A process of preparing a titanium-tantalum alloy including forming a suite mixture of essentially pure titanium powder and essentially pure tantalum powder, melting the mixture of titanium powder and tantalum powder by plasma torch melting under a pressure greater than atmospheric pressure to form a titanium-tantalum solution, and casting the molten solution of titanium-tantalum to form a solid homogeneous titanium-tantalum product is disclosed.The process can further include hot-rolling the cast solid homogeneous titanium-tantalum product to form a sheet of the titanium-tantalum product.
    Type: Grant
    Filed: March 14, 1995
    Date of Patent: February 22, 2000
    Assignee: The Regents of the University of California office of Technology Transfer
    Inventors: R. Alan Patterson, Paul S. Dunn, John F. Bingert, James D. Cotton
  • Patent number: 5802708
    Abstract: The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.
    Type: Grant
    Filed: May 30, 1996
    Date of Patent: September 8, 1998
    Assignee: The Regents of The University of California
    Inventors: Mary Ann Hill, John F. Bingert, Sherri A. Bingert, Dan J. Thoma
  • Patent number: 5434128
    Abstract: A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for
    Type: Grant
    Filed: December 17, 1993
    Date of Patent: July 18, 1995
    Assignee: The United States Department of Energy
    Inventors: David A. Korzekwa, John F. Bingert, Dean E. Peterson, Haskell Sheinberg