Patents by Inventor John F. Boylan

John F. Boylan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8016854
    Abstract: A strut assembly to be used in conjunction with an embolic filtering device has varying strut thicknesses, with the thickness selected based at least in part on the flexing characteristics of the particular portion of the strut assembly. The strut assembly is formed with patterns having flexing portions and stable portions, with the flexing portions contributing to the flexibility of the strut assembly during delivery and recovery in the patient's vasculature. The stable portions remain relatively unflexed and stiff when being delivered or recovered from the patient's vasculature. The stable portions provide strength and increased radiopacity to the strut assembly which is needed when the strut assembly is deployed in the body vessel. The flexing portions act much like a mechanical hinges in providing the needed flexibility to resiliently bend when being delivered through tortuous anatomy of the patient.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: September 13, 2011
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: John F. Boylan, Orlando M. Padilla, Christopher J. Tarapata
  • Patent number: 7942892
    Abstract: An expandable frame for an embolic filtering device used to capture embolic debris in a body lumen. The expandable frame also includes a filtering element. A nickel-titanium alloy is used to form the frame. Due to limited heat treatment, the frame exhibits linear pseudoelasticity when positioned inside the body lumen. The nickel-titanium alloy includes a ternary element such as iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium so that the frame is also radiopaque.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: May 17, 2011
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Peter D'Aquanni, John F. Boylan, Wayne E. Cornish
  • Patent number: 7938843
    Abstract: Cold worked nickel-titanium alloys that have linear pseudoelastic behavior without a phase transformation or onset of stress-induced martensite as applied to a medical device having a strut formed body deployed from a sheath is disclosed. In one application, an embolic protection device that employs a linear pseudoelastic nitinol self-expanding strut assembly with a small profile delivery system for use with interventional procedures is disclosed. The expandable strut assembly is covered with a filter element and both are compressed into a restraining sheath for delivery to a deployment site downstream and distal to an interventional procedure. Once at the desired site, the restraining sheath is retracted to deploy the embolic protection device, which captures flowing emboli generated during the interventional procedure. Linear pseudoelastic nitinol is used in the medical device as distinct from non-linear pseudoelastic (i.e., superelastic) nitinol.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: May 10, 2011
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: John F. Boylan, Keif Fitzgerald, Zhi Cheng Lin
  • Patent number: 7918011
    Abstract: A radiopaque nitinol medical device such as a stent for use with or implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium. The added ternary element improves the radiopacity of the nitinol stent comparable to that of a stainless steel stent of the same and strut pattern coated with a thin layer of gold. The nitinol stent has improved radioplacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: April 5, 2011
    Assignee: Abbott Cardiovascular Systems, Inc.
    Inventors: John F. Boylan, Daniel L. Cox
  • Publication number: 20100312327
    Abstract: A medical device such as, for example, an implantable expandable stent is constructed of a ternary alloy of molybdenum, rhenium, and a third metal. In a preferred embodiment, the third metal is a refractory metal selected to improve the ductility of the alloy. The alloy may further be advantageously constructed to have a crystal structure selected from HCP, BCC, FCC, and tetragonal to further optimize the physical characteristics of the medical device.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 9, 2010
    Applicant: ABBOT CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Pamela A. KRAMER-BROWN, John F. BOYLAN, Randolf VON OEPEN
  • Publication number: 20100114295
    Abstract: A radiopaque nitinol stent for implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element including tungsten. The added tungsten in specified amounts improve the radiopacity of the nitinol stent comparable to that of a stainless steel stent of the same strut pattern coated with a thin layer of gold. Furthermore, the nitinol stent has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility.
    Type: Application
    Filed: January 12, 2010
    Publication date: May 6, 2010
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Brian Lee Pelton, John F. Boylan
  • Patent number: 7658760
    Abstract: A radiopaque nitinol stent for implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element including tungsten. The added tungsten in specified amounts improve the radiopacity of the nitinol stent comparable to that of a stainless steel stent of the same strut pattern coated with a thin layer of gold. Furthermore, the nitinol stent has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: February 9, 2010
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Brian Lee Pelton, John F. Boylan
  • Patent number: 7632303
    Abstract: A medical device has a structure differentiated in terms of its stiffness or elasticity. Such stiffness differentiation is achieved through the use of superelastic or shape-memory materials which transition between a relatively malleable phase to a stiffer phase at a transition temperature which is adjustable by heat treatment. A differentiation of the stiffness of the structure forming the medical device is achieved by differentially adjusting the transition temperature of select portions of the medical device before the medical device is placed in its operational mode, usually implanted in a body at body temperature.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: December 15, 2009
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Kent C. B. Stalker, Masoud Molaei, John F. Boylan, Matthew J. Gillick
  • Publication number: 20090248130
    Abstract: A stent and a delivery system for implanting the stent in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element in order to minimize the stress hysteresis of the superelastic material. The stress hysteresis is defined by the difference between the loading plateau stress and the unloading plateau stress of the superelastic material. The resulting delivery system has a small profile and includes a sheath covering the stent that has a thin wall.
    Type: Application
    Filed: February 11, 2009
    Publication date: October 1, 2009
    Applicant: Abbott Cardiovascular Systems, Inc.
    Inventor: John F. Boylan
  • Publication number: 20090099645
    Abstract: There is disclosed medical devices, such as stents, guidewires and embolic filters, comprising a binary alloy of titanium and one binary element selected from platinum, palladium, rhodium, and gold. There is also disclosed a radiopaque marker comprising the disclosed binary alloy, as well as medical devices having the radiopaque marker attached thereto. Methods of attaching the radiopaque marker to the medical devices, such as by welding, are also disclosure also disclosed.
    Type: Application
    Filed: May 15, 2008
    Publication date: April 16, 2009
    Inventors: John A. Simpson, John F. Boylan, Wayne Cornish
  • Publication number: 20090098013
    Abstract: A radiopaque nitinol medical device such as a stent for use with or implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium. The added ternary element improves the radiopacity of the nitinol stent comparable to that of a stainless steel stent of the same size and strut pattern coated with a thin layer of gold. The nitinol stent has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility.
    Type: Application
    Filed: December 17, 2008
    Publication date: April 16, 2009
    Inventors: John F. Boylan, Daniel L. Cox
  • Publication number: 20080288056
    Abstract: There is disclosed a radiopaque marker comprising a binary alloy of titanium and one binary element selected from platinum, palladium, rhodium, and gold. There is also disclosed various medical devices, such as stents, guidewires and embolic filters, that have the radiopaque marker attached thereto. Methods of attaching the radiopaque marker to the medical devices, such as by welding, are also disclosed.
    Type: Application
    Filed: May 15, 2007
    Publication date: November 20, 2008
    Inventors: John A. Simpson, John F. Boylan
  • Publication number: 20080208244
    Abstract: A strut assembly to be used in conjunction with an embolic filtering device has varying strut thicknesses, with the thickness selected based at least in part on the flexing characteristics of the particular portion of the strut assembly. The strut assembly is formed with patterns having flexing portions and stable portions, with the flexing portions contributing to the flexibility of the strut assembly during delivery and recovery in the patient's vasculature. The stable portions remain relatively unflexed and stiff when being delivered or recovered from the patient's vasculature. The stable portions provide strength and increased radiopacity to the strut assembly which is needed when the strut assembly is deployed in the body vessel. The flexing portions act much like a mechanical hinges in providing the needed flexibility to resiliently bend when being delivered through tortuous anatomy of the patient.
    Type: Application
    Filed: February 4, 2008
    Publication date: August 28, 2008
    Applicant: ADVANCED CARDIOVASCULAR SYSTEMS, INC.
    Inventors: John F. Boylan, Orlando M. Padilla, Christopher J. Tarapata
  • Patent number: 7338510
    Abstract: A strut assembly to be used in conjunction with an embolic filtering device has varying strut thicknesses, with the thickness selected based at least in part on the flexing characteristics of the particular portion of the strut assembly. The strut assembly is formed with patterns having flexing portions and stable portions, with the flexing portions contributing to the flexibility of the strut assembly during delivery and recovery in the patient's vasculature. The stable portions remain relatively unflexed and stiff when being delivered or recovered from the patient's vasculature. The stable portions provide strength and increased radiopacity to the strut assembly which is needed when the strut assembly is deployed in the body vessel. The flexing portions act much like a mechanical hinges in providing the needed flexibility to resiliently bend when being delivered through tortuous anatomy of the patient.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: March 4, 2008
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: John F. Boylan, Orlando M. Padilla, Christopher J. Tarapata
  • Patent number: 7128757
    Abstract: A radiopaque nitinol medical device such as a stent for use with or implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium. The nitinol stent has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility. Another embodiment includes a balloon expandable stent made from a radiopaque and MRI compatible alloy such as nitinol and includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, hafnium, osmium, zirconium, niobium, or molybdenum.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: October 31, 2006
    Assignee: Advanced Cardiovascular, Inc.
    Inventors: John F. Boylan, Daniel L. Cox, Pamela A. Kramer-Brown
  • Patent number: 7029892
    Abstract: The present invention relates to a serine threonine kinase. The invention also relates to nucleic acids encoding the kinase, vectors, host cells, antibodies and recombinant methods for producing the h2520-59 polypeptide. In addition, the invention discloses therapeutic, diagnostic and research utilities for h2520-59 and related products.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: April 18, 2006
    Assignee: Amgen, Inc.
    Inventors: John F. Boylan, Alex J. Bowers
  • Patent number: 6896691
    Abstract: A self-expanding filter has a deployable resilient distal portion with properties of passing fluid (e.g. blood) in a vessel (e.g. an artery) and blocking the passage of emboli in the fluid. The self-expanding filter is disposed in the vessel, in the direction of fluid flow in the vessel, with its resilient proximal and distal ends at positions past a lesion in the vessel. The distal end of the self-expanding filter is then deployed against the vessel wall. An interventional device, such as an expandable member (e.g. balloon) and expandable stent are disposed in the vessel at the position of the lesion in the vessel. The expandable member is then dilated to expand the expandable stent against the vessel wall and open the vessel at the lesion position. Fluid (blood) flows through the deployed distal end of the self-expanding filter and emboli created during the procedure are trapped by the deployed distal end of the filter.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: May 24, 2005
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: John F. Boylan, John A. Simpson
  • Patent number: 6881542
    Abstract: The present invention relates to a serine threonine kinase. The invention also relates to nucleic acids encoding the kinase, vectors, host cells, antibodies and recombinant methods for producing the h2520-59 polypeptide. In addition, the invention discloses therapeutic, diagnostic and research utilities for h2520-59 and related products.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: April 19, 2005
    Assignee: Amgen Inc.
    Inventors: John F. Boylan, Alex J. Bowers
  • Patent number: 6855161
    Abstract: A radiopaque nitinol medical device such as a stent for use with or implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium. The added ternary element improves the radiopacity of the nitinol stent comparable to that of a stainless steel stent of the same size and strut pattern coated with a thin layer of gold. The nitinol stent has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: February 15, 2005
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: John F. Boylan, Daniel L. Cox
  • Publication number: 20040267301
    Abstract: An embolic protection device for use in a blood vessel when an interventional procedure is being performed in a stenosed or occluded region to capture any embolic material which may be created and released into the bloodstream during the procedure. The device includes a filtering assembly having a self-expanding strut assembly and a filter element attached thereto. In one embodiment, the filtering assembly is attached to the distal end of a guide wire and is deployed within the patient's vasculature as the guide wire is manipulated into the area of treatment. A restraining sheath placed over the filtering assembly in a coaxial arrangement maintains the filtering assembly in its collapsed position until it is ready to be deployed by the physician. Thereafter, the sheath can be retracted to expose the filtering assembly which will then self-expand within the patient's vasculature.
    Type: Application
    Filed: September 17, 2003
    Publication date: December 30, 2004
    Inventors: John F. Boylan, William J. Boyle, Andy E. Denison, Debashis Dutta, Benjamin C. Huter, Scott J. Huter, Paul F. Muller, Samir Patel, Christopher J. Tarapata, Chicheng Wang, Francisco Sanchez, Kent C.B. Stalker