Patents by Inventor John F. Poco

John F. Poco has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7211605
    Abstract: An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: May 1, 2007
    Assignee: The Regents of the University of California
    Inventors: Paul R. Coronado, John F. Poco, Lawrence W. Hrubesh
  • Publication number: 20040171700
    Abstract: An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.
    Type: Application
    Filed: March 4, 2004
    Publication date: September 2, 2004
    Applicant: The Regents of the University of California
    Inventors: Paul R. Coronado, John F. Poco, Lawrence W. Hrubesh
  • Publication number: 20040142168
    Abstract: Fibers, and fabrics produced from the fibers, are made water repellent, fire-retardant and/or thermally insulating by filling void spaces in the fibers and/or fabrics with a powdered material. When the powder is sufficiently finely divided, it clings tenaciously to the fabric's fibers and to itself, resisting the tendency to be removed from the fabric.
    Type: Application
    Filed: December 24, 2003
    Publication date: July 22, 2004
    Inventors: Lawrence W. Hrubesh, John F. Poco, Paul R. Coronado
  • Patent number: 6723378
    Abstract: Fibers, and fabrics produced from the fibers, are made water repellent, fire-retardant and/or thermally insulating by filling void spaces in the fibers and/or fabrics with a powdered material. When the powder is sufficiently finely divided, it clings tenaciously to the fabric's fibers and to itself, resisting the tendency to be removed from the fabric.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: April 20, 2004
    Assignee: The Regents of the University of California
    Inventors: Lawrence W. Hrubesh, John F. Poco, Paul R. Coronado
  • Patent number: 6620458
    Abstract: A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: September 16, 2003
    Assignee: The Regents of the University of California
    Inventors: John F. Poco, Lawrence W. Hrubesh
  • Publication number: 20030082379
    Abstract: Fibers, and fabrics produced from the fibers, are made water repellent, fire-retardant and/or thermally insulating by filling void spaces in the fibers and/or fabrics with a powdered material. When the powder is sufficiently finely divided, it clings tenaciously to the fabric's fibers and to itself, resisting the tendency to be removed from the fabric.
    Type: Application
    Filed: October 25, 2001
    Publication date: May 1, 2003
    Applicant: The Regents of the University of California
    Inventors: Lawrence W. Hrubesh, John F. Poco, Paul R. Coronado
  • Publication number: 20030060519
    Abstract: A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensatioin, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.
    Type: Application
    Filed: September 27, 2001
    Publication date: March 27, 2003
    Applicant: The Regents of the University of California
    Inventors: John F. Poco, Lawrence W. Hrubesh
  • Publication number: 20030032681
    Abstract: An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.
    Type: Application
    Filed: September 21, 2001
    Publication date: February 13, 2003
    Applicant: The Regents of the University of Clifornia
    Inventors: Paul R. Coronado, John F. Poco, Lawrence W. Hrubesh
  • Patent number: 6168737
    Abstract: A pattern of dielectric structures are formed directly on a substrate in a single step using sol-gel chemistry and molding procedures. The resulting dielectric structures are useful in vacuum applications for electronic devices. Porous, lightweight structures having a high aspect ratio that are suitable for use as spacers between the faceplate and baseplate of a field emission display can be manufactured using this method.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: January 2, 2001
    Assignee: The Regents of the University of California
    Inventors: John F. Poco, Lawrence W. Hrubesh
  • Patent number: 6158244
    Abstract: Optical quality glass having a selected refractive index is produced by a two stage drying process. A gel is produced using sol-gel chemistry techniques and first dried by controlled evaporation until the gel volume reaches a pre-selected value. This pre-selected volume determines the density and refractive index of the finally dried gel. The gel is refilled with solvent in a saturated vapor environment, and then dried again by supercritical extraction of the solvent to form a glass. The glass has a refractive index less than the full density of glass, and the range of achievable refractive indices depends on the composition of the glass. Glasses having different refractive indices chosen from an uninterrupted range of values can be produced from a single precursor solution.
    Type: Grant
    Filed: March 16, 1998
    Date of Patent: December 12, 2000
    Assignee: The Regents of the University of California
    Inventors: John F. Poco, Lawrence W. Hrubesh
  • Patent number: 6087407
    Abstract: A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: July 11, 2000
    Assignee: The Regents of the University of California
    Inventors: Paul R. Coronado, John F. Poco
  • Patent number: 6005012
    Abstract: A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.
    Type: Grant
    Filed: October 29, 1998
    Date of Patent: December 21, 1999
    Assignee: The Regents of the University of California
    Inventors: Lawrence W. Hrubesh, John F. Poco, Paul R. Coronado
  • Patent number: 5973015
    Abstract: A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.
    Type: Grant
    Filed: February 2, 1998
    Date of Patent: October 26, 1999
    Assignee: The Regents of the University of California
    Inventors: Paul R. Coronado, John F. Poco
  • Patent number: 5686031
    Abstract: An improved, rapid process is provided for making microporous and mesoporous materials, including aerogels and pre-ceramics. A gel or gel precursor is confined in a sealed vessel to prevent structural expansion of the gel during the heating process. This confinement allows the gelation and drying processes to be greatly accelerated, and significantly reduces the time required to produce a dried aerogel compared to conventional methods. Drying may be performed either by subcritical drying with a pressurized fluid to expel the liquid from the gel pores or by supercritical drying. The rates of heating and decompression are significantly higher than for conventional methods.
    Type: Grant
    Filed: January 5, 1995
    Date of Patent: November 11, 1997
    Assignee: Regents of the University of California
    Inventors: Paul R. Coronado, John F. Poco, Lawrence W. Hrubesh, Robert W. Hopper
  • Patent number: 5684907
    Abstract: An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: November 4, 1997
    Assignee: The Regents of the University of California
    Inventors: Gregory A. Sprehn, Lawrence W. Hrubesh, John F. Poco, Pamela H. Sandler
  • Patent number: 5409683
    Abstract: A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: April 25, 1995
    Assignee: Regents of the University of California
    Inventors: Thomas M. Tillotson, John F. Poco, Lawrence W. Hrubesh, Ian M. Thomas
  • Patent number: 5275796
    Abstract: A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm.sup.3 to those with a density of more than 0.8 g/cm.sup.3, by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm.sup.3. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm.sup.3, with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described.
    Type: Grant
    Filed: September 5, 1991
    Date of Patent: January 4, 1994
    Assignee: Regents of the University of California
    Inventors: Thomas M. Tillotson, John F. Poco, Lawrence W. Hrubesh, Ian M. Thomas
  • Patent number: 5242647
    Abstract: The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.
    Type: Grant
    Filed: July 30, 1991
    Date of Patent: September 7, 1993
    Assignee: Regents of The University of California
    Inventor: John F. Poco