Patents by Inventor John Fowler

John Fowler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939152
    Abstract: Systems and methods for efficiently managing bulk material are provided. The disclosure is directed to a portable support structure used to receive one or more portable containers of bulk material and output bulk material from the containers directly into the blender hopper. The portable support structure may include a frame for receiving and holding the one or more portable bulk material containers in an elevated position proximate the blender hopper, as well as one or more gravity feed outlets for routing the bulk material from the containers directly into the blender hopper. In some embodiments, the portable support structure may be transported to the well site on a trailer, unloaded from the trailer, and positioned proximate the blender unit. In other embodiments, the portable support structure may be a mobile support structure that is integrated into a trailer unit.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: March 26, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Thomas W. Hawkins, Bryan John Lewis, Tori H. Miller, Wesley John Warren, Austin Carl Schaffner, Glenn Ray Fowler, Bryan Chapman Lucas, Calvin L. Stegemoeller
  • Patent number: 11930976
    Abstract: An autonomous floor cleaning robot includes a robot body, a drive supporting the robot body to maneuver the robot across a floor surface, a pad holder attached to an underside of the robot body and configured to receive a removable cleaning pad, and a pad sensor configured to sense a pad type identifier on a central region of the cleaning pad. The pad type identifier includes a marker on the central region of the cleaning pad. The cleaning pad has a mounting card affixed thereto, and the pad type identifier includes an array of apertures that expose selected portions of the marker.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: March 19, 2024
    Assignee: iRobot Corporation
    Inventors: John Reimels, Marcus R. Williams, Adam Goss, Isaac Fowler, Lucile Driscoll
  • Publication number: 20230009890
    Abstract: An electrical circuit for providing led light bulb drivers with the necessary electrical load for most triac and digital dimmer switches and provide dimming control to mimic incandescent light bulbs is described herein. The electrical circuit includes a non-linear electrical load circuit that is electrically coupled to a rectified alternating current (AC) input power source and providing the necessary load current to initiate and maintain activation of triac and digital dimmer switches. A phase sense and amplifier circuit is also coupled to the rectified AC input power source and it senses the AC input voltage phase, then transmits a control signal to the light emitting diode (LED) driver to adjust the current level of the power being delivered to the LEDs in a manner to mimic the dimming of incandescent light bulbs.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 12, 2023
    Applicant: STAR MICROELECTRONIC SYSTEMS, LLC
    Inventor: David John Fowler
  • Patent number: 10371447
    Abstract: An anchor assembly for anchoring refractory materials is disclosed for use in high tension stress applications. The anchor assembly includes at least one elongated plate having expansion slots formed along one edge of the elongated plate and semi-circular recessed formed along an opposing edge of the plate.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: August 6, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Patrick L Yoder, Christopher John Fowler, Aaron M. Schlett, Laura E. Johnsen
  • Patent number: 10352619
    Abstract: An anchor assembly for anchoring refractory materials within a vessel is disclosed that provides for a more reliable refractory anchor and resultant refractory lining system that is easier to install both in terms of the refractory lining and the anchor assembly itself when compared to prior art anchor assemblies. The anchor assembly includes a base pin assembly, and at least one anchor leg connected to and extending from the base pin assembly. The base pin assembly includes a mounting end formed on one end of the pin assembly adapted for securing the base pin assembly to the vessel. The mounting end has an electrical resistance contact point formed thereon. The electrical resistant contact point preferably has a flux material located thereon.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: July 16, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Patrick L. Yoder, Christopher John Fowler, Laura E Johnsen, Vance A. McCray, Aaron M. Schlett
  • Publication number: 20180320972
    Abstract: An anchor assembly for anchoring refractory materials is disclosed for use in high tension stress applications. The anchor assembly includes at least one elongated plate having expansion slots formed along one edge of the elongated plate and semi-circular recessed formed along an opposing edge of the plate.
    Type: Application
    Filed: April 27, 2018
    Publication date: November 8, 2018
    Inventors: PATRICK L YODER, CHRISTOPHER JOHN FOWLER, AARON M. SCHLETT, LAURA E. JOHNSEN
  • Publication number: 20180320973
    Abstract: An anchor assembly for anchoring refractory materials within a vessel is disclosed that provides for a more reliable refractory anchor and resultant refractory lining system that is easier to install both in terms of the refractory lining and the anchor assembly itself when compared to prior art anchor assemblies. The anchor assembly includes a base pin assembly, and at least one anchor leg connected to and extending from the base pin assembly. The base pin assembly includes a mounting end formed on one end of the pin assembly adapted for securing the base pin assembly to the vessel. The mounting end has an electrical resistance contact point formed thereon. The electrical resistant contact point preferably has a flux material located thereon.
    Type: Application
    Filed: April 27, 2018
    Publication date: November 8, 2018
    Inventors: PATRICK L. YODER, CHRISTOPHER JOHN FOWLER, LAURA E. JOHNSEN, VANCE A. MCCRAY, AARON M. SCHLETT
  • Patent number: 10047298
    Abstract: A delayed coking unit has a thermal shock-resistant, erosion-resistant internal lining to reduce thermally-induced mechanical stresses in the pressure boundary of the coke drum. The lining is effective to reduce or mitigate the transient thermal stress that occurs in the pressure boundary of the coke drum and to reduce or minimize the high thermal stress resulting from temperature differentials at the skirt-to-shell junction.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: August 14, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Christopher S. Hinson, Christopher John Fowler, David Scott Sinclair, Adam Garrett Susong, Robert Lee Antram, John Roger Peterson
  • Publication number: 20150267122
    Abstract: A delayed coking unit has a thermal shock-resistant, erosion-resistant internal lining to reduce thermally-induced mechanical stresses in the pressure boundary of the coke drum. The lining is effective to reduce or mitigate the transient thermal stress that occurs in the pressure boundary of the coke drum and to reduce or minimize the high thermal stress resulting from temperature differentials at the skirt-to-shell junction.
    Type: Application
    Filed: March 9, 2015
    Publication date: September 24, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Christopher S. Hinson, Christopher John FOWLER, David Scott SINCLAIR, Adam Garrett SUSONG, Robert Lee ANTRAM, John Roger PETERSON
  • Patent number: 9056340
    Abstract: Systems, compositions, and methods for the bioremediation of a contaminant contained within a contaminated region. The systems, compositions, and methods may include supplying a first bioremediation formulation that includes an ion exchange resin to a first treatment zone that is associated with the contaminated region. The systems, compositions, and methods further may include supplying a second bioremediation formulation that includes a high-mobility oxidant, a low-mobility oxidant, and a nutrient material to a second treatment zone that is associated with the contaminated region. The systems, compositions, and methods also may include a kit of bioremediation formulations that includes the first bioremediation formulation and the second bioremediation formulation and is to be utilized during the bioremediation of the contaminated region.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: June 16, 2015
    Assignee: Bioremediation Specialists L.L.C.
    Inventor: Troy John Fowler
  • Patent number: 8566969
    Abstract: A helmet includes a helmet body defining a helmet interior. A fit system is provided to engage the helmet to the head of a wearer, at least a first and second portion of the fit system are moveable independent of the other. A fit adjuster varies a characteristic of the fit system, such as size, shape, orientation or pressure, allowing a wearer to customize fit of the helmet.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 29, 2013
    Assignee: The Burton Corporation
    Inventors: Brian Glogowski, John D. Fiegener, Daniel Richard Armstrong, Michael Tinstman, Hans Dyhrman, John Fowler
  • Publication number: 20130260441
    Abstract: Systems, compositions, and methods for the bioremediation of a contaminant contained within a contaminated region. The systems, compositions, and methods may include supplying a first bioremediation formulation that includes an ion exchange resin to a first treatment zone that is associated with the contaminated region. The systems, compositions, and methods further may include supplying a second bioremediation formulation that includes a high-mobility oxidant, a low-mobility oxidant, and a nutrient material to a second treatment zone that is associated with the contaminated region. The systems, compositions, and methods also may include a kit of bioremediation formulations that includes the first bioremediation formulation and the second bioremediation formulation and is to be utilized during the bioremediation of the contaminated region.
    Type: Application
    Filed: August 2, 2012
    Publication date: October 3, 2013
    Applicant: Bioremediation Specialists, LLC
    Inventor: Troy John Fowler
  • Patent number: 8361244
    Abstract: The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: January 29, 2013
    Assignee: ExxonMobil Researach and Engineering Company
    Inventors: John Roger Peterson, Robert Lee Antram, Christopher John Fowler, Neeraj Srinivas Thirumalai, ChangMin Chun, Emery Bela Lendvai-Lintner
  • Patent number: 8323423
    Abstract: The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: December 4, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John Roger Peterson, Narasimha-Rao Venkata Bangaru, Robert Lee Antram, Christopher John Fowler, Neeraj Srinivas Thirumalai, ChangMin Chun, Emery Bela Lendvai-Lintner
  • Patent number: 8317940
    Abstract: The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: November 27, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John Roger Peterson, Narasimha-Rao Venkata Bangaru, Robert Lee Antram, Christopher John Fowler, Neeraj Srinivas Thirumalai, ChangMin Chun, Emery Bela Lendvai-Lintner
  • Publication number: 20120252102
    Abstract: Systems, compositions, and methods for the anaerobic oxidative bioremediation of a contaminant contained within a treatment zone associated with a contaminated region. These systems, compositions, and methods may include a bioremediation formulation that includes a high-mobility oxidant, a low-mobility oxidant, and a nutrient source. The high-mobility oxidant may include a nitrate salt. The low-mobility oxidant may include a sulfate salt. The nutrient source may include brewer's yeast and/or a complex sugar. The bioremediation formulation also may include one or more additional components, including a phosphate salt, a surfactant, a solvent, a chemical oxidant, and/or a bio-augmentation species.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 4, 2012
    Applicant: Bioremediation Specialists, LLC
    Inventor: Troy John Fowler
  • Publication number: 20120177933
    Abstract: A cermet composition represented by the formula (PQ)(RS)X comprising: a ceramic phase (PQ), a binder phase (RS) and X wherein X is at least one member selected from the group consisting of an oxide dispersoid E, an intermetallic compound F and a derivative compound G wherein said ceramic phase (PQ) is dispersed in the binder phase (RS) as particles of diameter in the range of about 0.5 to 3000 microns, and said X is dispersed in the binder phase (RS) as particles in the size range of about 1 nm to 400 nm.
    Type: Application
    Filed: July 17, 2007
    Publication date: July 12, 2012
    Inventors: Narasimha-Rao Venkata Bangaru, Jayoung Koo, ChangMin Chun, Hyun-Woo Jin, John Roger Peterson, Robert Lee Antram, Christopher John Fowler
  • Publication number: 20110169387
    Abstract: The invention provides a storage furniture unit (20) for use in conjunction with a furniture item (40) providing a worksurface (42), the storage furniture unit (20) having a first storage portion (22) which is arranged below the worksurface (42) in use, and a second storage portion (24) which is arranged above the worksurface (42) in use.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 14, 2011
    Applicant: FC Brown (Steel Equipment) Limited
    Inventors: Christopher John Fowler, Alexander James Forsyth
  • Publication number: 20110104384
    Abstract: The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 5, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: John R. Peterson, Narasimha-Rao V. Bangaru, Robert Lee Antram, Christopher John Fowler, Neeraj S. Thirumalai, ChangMin Chun, Emery B. Lendvai-Lintner
  • Publication number: 20110104383
    Abstract: The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 5, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: JOHN ROGER PETERSON, NARASIMHA-RAO V. BANGARU, ROBERT LEE ANTRAM, CHRISTOPHER JOHN FOWLER, NEERAJ S. THIRUMALAI, CHANGMIN CHUN, EMERY B. LENDVAI-LINTNER