Patents by Inventor John G. Dorsey

John G. Dorsey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10884811
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: January 5, 2021
    Assignee: Apple Inc.
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol
  • Publication number: 20200273424
    Abstract: The invention provides a technique for targeted scaling of the voltage and/or frequency of a processor included in a computing device. One embodiment involves scaling the voltage/frequency of the processor based on the number of frames per second being input to a frame buffer in order to reduce or eliminate choppiness in animations shown on a display of the computing device. Another embodiment of the invention involves scaling the voltage/frequency of the processor based on a utilization rate of the GPU in order to reduce or eliminate any bottleneck caused by slow issuance of instructions from the CPU to the GPU. Yet another embodiment of the invention involves scaling the voltage/frequency of the CPU based on specific types of instructions being executed by the CPU. Further embodiments include scaling the voltage and/or frequency of a CPU when the CPU executes workloads that have characteristics of traditional desktop/laptop computer applications.
    Type: Application
    Filed: September 30, 2019
    Publication date: August 27, 2020
    Applicant: Apple Inc.
    Inventors: John G. Dorsey, James S. Ismail, Keith Cox, Gaurav Kapoor
  • Publication number: 20200073671
    Abstract: Closed loop performance controllers of asymmetric multiprocessor systems may be configured and operated to improve performance and power efficiency of such systems by adjusting control effort parameters that determine the dynamic voltage and frequency state of the processors and coprocessors of the system in response to the workload. One example of such an arrangement includes applying hysteresis to the control effort parameter and/or seeding the control effort parameter so that the processor or coprocessor receives a returning workload in a higher performance state. Another example of such an arrangement includes deadline driven control, in which the control effort parameter for one or more processing agents may be increased in response to deadlines not being met for a workload and/or decreased in response to deadlines being met too far in advance. The performance increase/decrease may be determined by comparison of various performance metrics for each of the processing agents.
    Type: Application
    Filed: April 5, 2019
    Publication date: March 5, 2020
    Inventors: Aditya Venkataraman, Bryan R. Hinch, John G. Dorsey
  • Publication number: 20200073714
    Abstract: Closed loop performance controllers of asymmetric multiprocessor systems may be configured and operated to improve performance and power efficiency of such systems by adjusting control effort parameters that determine the dynamic voltage and frequency state of the processors and coprocessors of the system in response to the workload. One example of such an arrangement includes applying hysteresis to the control effort parameter and/or seeding the control effort parameter so that the processor or coprocessor receives a returning workload in a higher performance state. Another example of such an arrangement includes deadline driven control, in which the control effort parameter for one or more processing agents may be increased in response to deadlines not being met for a workload and/or decreased in response to deadlines being met too far in advance. The performance increase/decrease may be determined by comparison of various performance metrics for each of the processing agents.
    Type: Application
    Filed: April 5, 2019
    Publication date: March 5, 2020
    Inventors: Aditya Venkataraman, Bryan R. Hinch, John G. Dorsey
  • Publication number: 20190369693
    Abstract: In an embodiment, an electronic device includes a package power zone controller. The device monitors the overall power consumption of multiple components of a “package.” The package power zone controller may detect workloads in which the package components (e.g. different types of processors, peripheral hardware, etc.) are each consuming relatively low levels of power, but the overall power consumption is greater than a desired target. The package power zone controller may implement various mechanisms to reduce power consumption in such cases.
    Type: Application
    Filed: February 4, 2019
    Publication date: December 5, 2019
    Inventors: James S. Ismail, John M. Ananny, John G. Dorsey, Bryan R. Hinch, Aditya Venkataraman, Keith Cox, Inder M. Sodhi, Achmed R. Zahir
  • Patent number: 10437313
    Abstract: Embodiments provide for a computer implemented method comprising sampling one or more power and performance metrics of a processor; determining an energy cost per instruction based on the one or more power and performance metrics; determining an efficiency metric based on the energy cost per instruction; computing an efficiency control error based on a difference between a current efficiency metric and a target efficiency metric; setting an efficiency control effort based on the efficiency control error; determining a performance control effort, the performance control effort determined by a performance controller for the processor; and adjusting the performance control effort based on the efficiency control effort, wherein adjusting the performance control effort reduces power consumption of the processor.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: October 8, 2019
    Inventors: John G. Dorsey, Christopher W. Chaney, Norman J. Rohrer, Cyril De La Cropte De Chanterac
  • Patent number: 10431181
    Abstract: The invention provides a technique for targeted scaling of the voltage and/or frequency of a processor included in a computing device. One embodiment involves scaling the voltage/frequency of the processor based on the number of frames per second being input to a frame buffer in order to reduce or eliminate choppiness in animations shown on a display of the computing device. Another embodiment of the invention involves scaling the voltage/frequency of the processor based on a utilization rate of the GPU in order to reduce or eliminate any bottleneck caused by slow issuance of instructions from the CPU to the GPU. Yet another embodiment of the invention involves scaling the voltage/frequency of the CPU based on specific types of instructions being executed by the CPU. Further embodiments include scaling the voltage and/or frequency of a CPU when the CPU executes workloads that have characteristics of traditional desktop/laptop computer applications.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: October 1, 2019
    Assignee: Apple Inc.
    Inventors: John G. Dorsey, James S. Ismail, Keith Cox, Gaurav Kapoor
  • Patent number: 10417054
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 17, 2019
    Assignee: Apple Inc.
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol
  • Publication number: 20190034238
    Abstract: Systems and methods are disclosed for scheduling threads on an asymmetric multiprocessing system having multiple core types. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Metrics for workloads offloaded to co-processors can be tracked and integrated into metrics for the offloading thread group.
    Type: Application
    Filed: September 28, 2018
    Publication date: January 31, 2019
    Inventors: JOHN G. DORSEY, DANIEL A. CHIMENE, ANDREI DOROFEEV, BRYAN R. HINCH, EVAN M. HOKE, ADITYA VENKATARAMAN
  • Publication number: 20180349176
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Application
    Filed: January 12, 2018
    Publication date: December 6, 2018
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol
  • Publication number: 20180349182
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Application
    Filed: January 12, 2018
    Publication date: December 6, 2018
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol
  • Publication number: 20180349191
    Abstract: Systems and methods are disclosed for scheduling threads on an asymmetric multiprocessing system having multiple core types. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Metrics for workloads offloaded to co-processors can be tracked and integrated into metrics for the offloading thread group.
    Type: Application
    Filed: June 2, 2018
    Publication date: December 6, 2018
    Inventors: JOHN G. DORSEY, DANIEL A. CHIMENE, ANDREI DOROFEEV, BRYAN R. HINCH, EVAN M. HOKE, ADITYA VENKATARAMAN
  • Publication number: 20180349175
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Application
    Filed: January 12, 2018
    Publication date: December 6, 2018
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol, James S. Ismail
  • Publication number: 20180349186
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Application
    Filed: January 12, 2018
    Publication date: December 6, 2018
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol
  • Patent number: 10067483
    Abstract: In an embodiment, a lifetime controller is configured to monitor operating conditions for a device, and to control operating conditions based on the previous conditions to improve the reliability characteristics of the device while permitting strenuous use as available. For example, the lifetime controller may permit strenuous use when the device is first powered on. Once a specified amount of strenuous use has occurred, the controller may cause the operating conditions to be reduced to reduce the wear on the device, and thus help to extend the lifetime of the device. Similarly, if a device is used in less strenuous conditions, the controller may accumulate credit which may be expended by permitting the device to operate in more strenuous conditions for a period of time.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: September 4, 2018
    Assignee: Apple Inc.
    Inventors: Ching E. Ho, Antonietta Oliva, James S. Ismail, John G. Dorsey, Keith Cox, Norman J. Rohrer
  • Publication number: 20170357302
    Abstract: Embodiments provide for a computer implemented method comprising sampling one or more power and performance metrics of a processor; determining an energy cost per instruction based on the one or more power and performance metrics; determining an efficiency metric based on the energy cost per instruction; computing an efficiency control error based on a difference between a current efficiency metric and a target efficiency metric; setting an efficiency control effort based on the efficiency control error; determining a performance control effort, the performance control effort determined by a performance controller for the processor; and adjusting the performance control effort based on the efficiency control effort, wherein adjusting the performance control effort reduces power consumption of the processor.
    Type: Application
    Filed: September 23, 2016
    Publication date: December 14, 2017
    Inventors: John G. Dorsey, Christopher W. Chaney, Norman J. Rohrer, Cyril De La Cropte De Chanterac
  • Publication number: 20170330528
    Abstract: The invention provides a technique for targeted scaling of the voltage and/or frequency of a processor included in a computing device. One embodiment involves scaling the voltage/frequency of the processor based on the number of frames per second being input to a frame buffer in order to reduce or eliminate choppiness in animations shown on a display of the computing device. Another embodiment of the invention involves scaling the voltage/frequency of the processor based on a utilization rate of the GPU in order to reduce or eliminate any bottleneck caused by slow issuance of instructions from the CPU to the GPU. Yet another embodiment of the invention involves scaling the voltage/frequency of the CPU based on specific types of instructions being executed by the CPU. Further embodiments include scaling the voltage and/or frequency of a CPU when the CPU executes workloads that have characteristics of traditional desktop/laptop computer applications.
    Type: Application
    Filed: March 28, 2017
    Publication date: November 16, 2017
    Applicant: Apple Inc.
    Inventors: John G. Dorsey, James S. Ismail, Keith Cox, Gaurav Kapoor
  • Patent number: 9672310
    Abstract: In an embodiment, the amount of supply voltage guardband to prevent incorrect operation due to aging effects may be modeled using an IC-specific age model generated early in the product life cycle of the IC. For example, high temperature operating life (HTOL) testing may be performed at multiple temperatures and/or voltages to develop the IC-specific age model. The IC-specific age model may be more accurate then the calculations used to develop guardband voltage as discussed previously, which rely on the aging of a single transistor. The IC-specific age model may be used along with monitoring of the aging effects during operation of the IC to predict an amount of increased guardband voltage that is currently desirable to apply to the IC. The predicted amount may vary from about zero when the IC is new to the full amount of guardband voltage when the IC is nearing end of life.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: June 6, 2017
    Assignee: Apple Inc.
    Inventors: Antonietta Oliva, John G. Dorsey, Keith Cox, Norman J. Rohrer, Sribalan Santhanam, Sung Wook Kang, Mohamed H. Abu-Rama, Ashish R. Jain
  • Patent number: 9613393
    Abstract: The invention provides a technique for targeted scaling of the voltage and/or frequency of a processor included in a computing device. One embodiment involves scaling the voltage/frequency of the processor based on the number of frames per second being input to a frame buffer in order to reduce or eliminate choppiness in animations shown on a display of the computing device. Another embodiment of the invention involves scaling the voltage/frequency of the processor based on a utilization rate of the GPU in order to reduce or eliminate any bottleneck caused by slow issuance of instructions from the CPU to the GPU. Yet another embodiment of the invention involves scaling the voltage/frequency of the CPU based on specific types of instructions being executed by the CPU. Further embodiments include scaling the voltage and/or frequency of a CPU when the CPU executes workloads that have characteristics of traditional desktop/laptop computer applications.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 4, 2017
    Assignee: Apple Inc.
    Inventors: John G. Dorsey, James S. Ismail, Keith Cox, Gaurav Kapoor
  • Publication number: 20160357243
    Abstract: The embodiments set forth a technique for providing reactive performance throttle engagement information to controller limiters, which are implemented as closed loop structures that analyze the information against target reactive performance throttle engagement rates and produce control effort limits. When reactive performance throttle engagement rates are below the target, controllers issue control efforts in a normal fashion such that they are not influenced by the control effort limits produced by the controller limiters. However, the controller limiters are also configured such that when reactive performance throttle engagement rates are above the target, the controllers issue control efforts in a modified fashion—specifically, in accordance with the control effort limits produced by the controller limiters. In this manner, control effort limits can effectively clamp the control efforts when particular conditions—such as excessive reactive performance throttle engagement rates—are being met.
    Type: Application
    Filed: September 29, 2015
    Publication date: December 8, 2016
    Inventors: John G. DORSEY, Keith COX