Patents by Inventor John G. Massey

John G. Massey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11054459
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: July 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Patent number: 10996259
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: May 4, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Patent number: 10989754
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 27, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Publication number: 20200141996
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Patent number: 10634797
    Abstract: A radiation exposure system having a beam source is provided. The system further includes a variable thickness degrader, positioned between the beam source and an object to be exposed, for providing varying degrees of degradation to a radiation beam emitted from the beam source onto the object. The system also includes a set of detectors, positioned between the variable thickness degrader and the object, for receiving and measuring only a portion of the radiation beam remaining after the degradation of the radiation beam by the variable thickness degrader.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: April 28, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael S. Gordon, John G. Massey, Kenneth P. Rodbell
  • Patent number: 10627529
    Abstract: A radiation exposure system having a beam source is provided. The system further includes a variable thickness degrader, positioned between the beam source and an object to be exposed, for providing varying degrees of degradation to a radiation beam emitted from the beam source onto the object. The system also includes a set of detectors, positioned between the variable thickness degrader and the object, for receiving and measuring only a portion of the radiation beam remaining after the degradation of the radiation beam by the variable thickness degrader.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: April 21, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael S. Gordon, John G. Massey, Kenneth P. Rodbell
  • Publication number: 20200072897
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Patent number: 10564214
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: February 18, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Publication number: 20190011573
    Abstract: A radiation exposure system having a beam source is provided. The system further includes a variable thickness degrader, positioned between the beam source and an object to be exposed, for providing varying degrees of degradation to a radiation beam emitted from the beam source onto the object. The system also includes a set of detectors, positioned between the variable thickness degrader and the object, for receiving and measuring only a portion of the radiation beam remaining after the degradation of the radiation beam by the variable thickness degrader.
    Type: Application
    Filed: December 15, 2017
    Publication date: January 10, 2019
    Inventors: Michael S. Gordon, John G. Massey, Kenneth P. Rodbell
  • Publication number: 20190011572
    Abstract: A radiation exposure system having a beam source is provided. The system further includes a variable thickness degrader, positioned between the beam source and an object to be exposed, for providing varying degrees of degradation to a radiation beam emitted from the beam source onto the object. The system also includes a set of detectors, positioned between the variable thickness degrader and the object, for receiving and measuring only a portion of the radiation beam remaining after the degradation of the radiation beam by the variable thickness degrader.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 10, 2019
    Inventors: Michael S. Gordon, John G. Massey, Kenneth P. Rodbell
  • Publication number: 20180074114
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 15, 2018
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Publication number: 20170285094
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 5, 2017
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Patent number: 9739824
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: August 22, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Publication number: 20160258994
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 8, 2016
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Patent number: 9395403
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: July 19, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Patent number: 9201727
    Abstract: A system for providing error detection or correction on a data bus includes one or more caches coupled to a central processing unit and to a hub by one or more buses. The system also includes a plurality of arrays, each array disposed on one of the buses. Each of the arrays includes a plurality of storage cells disposed in an insensitive direction and an error control mechanism configured to detect an error in the plurality of storage cells.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: December 1, 2015
    Assignee: International Business Machines Corporation
    Inventors: William V. Huott, Kevin W. Kark, John G. Massey, K. Paul Muller, David L. Rude, David S. Wolpert
  • Patent number: 9041428
    Abstract: A method for configuring the placement of a plurality of storage cells on an integrated circuit includes grouping the plurality of storage cells into a plurality of words, where each of the plurality of words is protected by an error control mechanism. The method also includes placing each of the storage cells on the integrated circuit such that a distance between any two of the storage cells belonging to one of the plurality of words is greater than a minimum distance. The minimum distance is configured such that a probability of any of the plurality of words experiencing multiple radiation induced errors is below a threshold value.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: William V. Huott, Kevin W. Kark, John G. Massey, K. Paul Muller, David L. Rude, David S. Wolpert
  • Patent number: 9043683
    Abstract: A method for providing error detection and/or correction to an array of storage cells includes determining a sensitive direction and an insensitive direction of the storage cells and adding a first error control mechanism to the array of storage cells in the insensitive direction. The method also includes adding a second error control mechanism to the array of storage cells in the sensitive direction. The second error control mechanism has a higher Hamming distance than the first error control mechanism.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: William V. Huott, Kevin W. Kark, John G. Massey, K. Paul Muller, David L. Rude, David S. Wolpert
  • Publication number: 20150115994
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 30, 2015
    Applicant: International Business Machines Corporation
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Patent number: 9021328
    Abstract: A method for adding error detection, or error detection combined with error correction, to a plurality of register banks includes grouping the plurality of register banks into an array. The method also includes adding a first error control mechanism to the array in a first direction and adding a second error control mechanism to the array in a second direction. The method further includes adding a product code to the array, the product code including applying the second error control mechanism to a plurality of bits of the first error control mechanism.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: William V. Huott, Kevin W. Kark, John G. Massey, K. Paul Muller, David L. Rude, David S. Wolpert