Patents by Inventor John Heck

John Heck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103304
    Abstract: Embodiments disclosed herein include a photonics module and methods of forming photonics modules. In an embodiment, the photonics module comprises a waveguide, and a modulator adjacent to the waveguide. In an embodiment, the modulator comprises a PN junction with a P-doped region and an N-doped region, where the PN junction is vertically oriented so that the P-doped region is over the N-doped region.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Inventors: Sagar SUTHRAM, John HECK, Ling LIAO, Mengyuan HUANG, Wilfred GOMES, Pushkar RANADE, Abhishek Anil SHARMA
  • Publication number: 20240103216
    Abstract: Embodiments disclosed herein include through silicon waveguides and methods of forming such waveguides. In an embodiment, a through silicon waveguide comprises a substrate, where the substrate comprises silicon. In an embodiment, a waveguide is provided through the substrate. In an embodiment, the waveguide comprises a waveguide structure. and a cladding around the waveguide structure.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Inventors: Sagar SUTHRAM, John HECK, Ling LIAO, Mengyuan HUANG, Wilfred GOMES, Pushkar RANADE, Abhishek Anil SHARMA
  • Patent number: 11908687
    Abstract: A device includes a layer including a first III-Nitride (III-N) material, a channel layer including a second III-N material, a release layer including nitrogen and a transition metal, where the release layer is between the first III-N material and the second III-N material. The device further includes a polarization layer including a third III-N material above the release layer, a gate structure above the polarization layer, a source structure and a drain structure on opposite sides of the gate structure where the source structure and the drain structure each include a fourth III-N material. The device further includes a source contact on the source structure and a drain contact on the drain structure.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: Khaled Ahmed, Anup Pancholi, John Heck, Thomas Sounart, Harel Frish, Sansaptak Dasgupta
  • Patent number: 11906777
    Abstract: Embodiments may relate to a wavelength-division multiplexing (WDM) transceiver that has a silicon waveguide layer coupled with a silicon nitride waveguide layer. In some embodiments, the silicon waveguide layer may include a tapered portion that is coupled with the silicon nitride waveguide layer. In some embodiments, the silicon waveguide layer may be coupled with a first oxide layer with a first z-height, and the silicon nitride waveguide layer may be coupled with a second oxide layer with a second z-height that is greater than the first z-height. Other embodiments may be described or claimed.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: John Heck, Lina He, Sungbong Park, Olufemi Isiade Dosunmu, Harel Frish, Kelly Christopher Magruder, Seth M. Slavin, Wei Qian, Ansheng Liu, Nutan Gautam, Mark Isenberger
  • Patent number: 11894474
    Abstract: Embodiments disclosed herein include optoelectronic systems and methods of forming such systems. In an embodiment the optoelectronic system comprises a board, and a carrier attached to the board. In an embodiment, a first die is on the carrier. In an embodiment, the first die is a photonics die, and a surface of the first die is covered by an optically transparent layer.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: February 6, 2024
    Assignee: Intel Corporation
    Inventors: Priyanka Dobriyal, Ankur Agrawal, Susheel Jadhav, Quan Tran, Raghuram Narayan, Raiyomand Aspandiar, Kenneth Brown, John Heck
  • Publication number: 20240004129
    Abstract: Embodiments of a microelectronic assembly comprise: a plurality of microelectronic sub-assemblies arranged in an array; and a plurality of photonic integrated circuit (PIC) dies, each PIC die having waveguides. Adjacent microelectronic sub-assemblies are coupled to one of the PIC dies by interconnects such that any one PIC die is coupled to more than two adjacent microelectronic sub-assemblies, and the microelectronic sub-assemblies coupled to each PIC die in the plurality of PIC dies are communicatively coupled by the waveguides in the PIC die. Each microelectronic sub-assembly comprises: an interposer integrated circuit (IC) die comprising one or more electrical controller circuit proximate to at least one edge of the interposer IC die; a first plurality of IC dies coupled to a first surface of the interposer IC die; and a second plurality of IC dies coupled to an opposing second surface of the interposer IC die.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Sagar Suthram, Debendra Mallik, John Heck, Pushkar Sharad Ranade, Ravindranath Vithal Mahajan, Thomas Liljeberg, Wilfred Gomes, Abhishek A. Sharma, Tahir Ghani
  • Publication number: 20230185022
    Abstract: Embodiments herein relate to systems, apparatuses, or processes for a silicon lens manufactured on a 110-oriented silicon wafer that includes highly accurate vertical alignment features on the edges of the silicon lens created using crystallographic etching. In embodiments, these vertical alignment features are revealed 111 planes in the silicon wafer. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 15, 2023
    Inventor: John HECK
  • Publication number: 20230077939
    Abstract: An electronic device comprises a photonic integrated circuit (PIC) including at least one optical signal source, an emitting lens disposed on the PIC to steer light emitted by the at least one optical signal source in a direction substantially parallel to a first surface of the PIC, and an optical element disposed on the PIC and having a curved surface in a shape of a quarter cylinder that is configured to steer light emitted from the emitting lens in a direction substantially orthogonal to the first surface of the PIC.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 16, 2023
    Inventors: Changhua Liu, Pooya Tadayon, John Heck, Srikant Nekkanty
  • Publication number: 20230077633
    Abstract: An electronic device comprises a photonic integrated circuit (PIC) including at least one waveguide, an emitting lens disposed on the PIC to emit light from the at least one waveguide in a direction substantially parallel to a first surface of the PIC, and an optical element disposed on the PIC and having a reflective surface configured to direct light emitted from the emitting lens in a direction away from the first surface of the PIC.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 16, 2023
    Inventors: Changhua Liu, Pooya Tadayon, John Heck, Eric J. Moret, Tarek A. Ibrahim, Zhichao Zhang, Jeremy D Ecton
  • Publication number: 20230075255
    Abstract: Described herein are IC devices that include hybrid lasers formed with a bonding layer. Hybrid lasers include an active light-emitting region coupled to a waveguide. In a hybrid laser, the waveguide and the light-emitting regions are formed separately from different materials, e.g., the waveguide is a single-crystal silicon, and the light-emitting region includes III-V semiconductors. An amorphous group IV material, such as silicon or germanium, is advantageously used to bond the light-emitting region to the waveguide.
    Type: Application
    Filed: September 7, 2021
    Publication date: March 9, 2023
    Applicant: Intel Corporation
    Inventors: John Heck, Paul B. Fischer
  • Publication number: 20230020440
    Abstract: Embodiments may include or relate to an optical coupler. The optical coupler may include a silicon nitride (SiN) waveguide. The waveguide may be formed by placing SiN on an epitaxially grown silicon structure that is then removed subsequent to placement of the SiN. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 28, 2022
    Publication date: January 19, 2023
    Inventors: John Heck, Harel Frish, Hari Mahalingam, Haisheng Rong
  • Publication number: 20230019747
    Abstract: Embodiments herein relate to an apparatus for use in a hybrid laser. The apparatus may include a silicon substrate and a waveguide to facilitate transmission of an optical signal in a first direction that is orthogonal to a surface of the silicon substrate. The apparatus may further include a metal shunt that is less than or equal to 10 micrometers from the waveguide in a second direction that is orthogonal to the surface of the silicon substrate and orthogonal to the first direction. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 23, 2022
    Publication date: January 19, 2023
    Inventors: Richard Jones, Pierre Doussiere, Aditi Mallik, Harel Frish, John Heck, Saeed Fathololoumi
  • Publication number: 20220413213
    Abstract: Silicon photonic integrated circuit (PIC) on a multi-zone semiconductor on insulator (SOI) substrate having at least a first zone and a second zone. Various optical devices of the PIC may be located above certain substrate zones that are most suitable. A first length of a photonic waveguide structure comprises the crystalline silicon and is within the first zone, while a second length of the waveguide structure is within the second zone. Within a first zone, the crystalline silicon layer is spaced apart from an underlying substrate material by a first thickness of dielectric material. Within the second zone, the crystalline silicon layer is spaced apart from the underlying substrate material by a second thickness of the dielectric material.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Intel Corporation
    Inventors: Harel Frish, John Heck, Randal Appleton, Stefan Meister, Haisheng Rong, Joshua Keener, Michael Favaro, Wesley Harrison, Hari Mahalingam, Sergei Sochava
  • Publication number: 20220122842
    Abstract: A device includes a layer including a first III-Nitride (III-N) material, a channel layer including a second III-N material, a release layer including nitrogen and a transition metal, where the release layer is between the first III-N material and the second III-N material. The device further includes a polarization layer including a third III-N material above the release layer, a gate structure above the polarization layer, a source structure and a drain structure on opposite sides of the gate structure where the source structure and the drain structure each include a fourth III-N material. The device further includes a source contact on the source structure and a drain contact on the drain structure.
    Type: Application
    Filed: December 28, 2021
    Publication date: April 21, 2022
    Applicant: Intel Corporation
    Inventors: Khaled Ahmed, Anup Pancholi, John Heck, Thomas Sounart, Harel Frish, Sansaptak Dasgupta
  • Publication number: 20220084936
    Abstract: Embedded three-dimensional electrode capacitors, and methods of fabricating three-dimensional electrode capacitors, are described. In an example, an integrated circuit structure includes a first metallization layer above a substrate, the first metallization layer having a first conductive structure in a first dielectric layer, the first conductive structure having a honeycomb pattern. An insulator structure is on the first conductive structure of the first metallization layer. A second metallization layer is above the first metallization layer, the second metallization layer having a second conductive structure in a second dielectric layer, the second conductive structure on the insulator structure, and the second conductive structure having the honeycomb pattern.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 17, 2022
    Inventors: Wei QIAN, Cung TRAN, Sungbong PARK, John HECK, Mark ISENBERGER, Seth SLAVIN, Mengyuan HUANG, Kelly MAGRUDER, Harel FRISH, Reece DEFREES, Zhi LI
  • Patent number: 11222987
    Abstract: In embodiments, an optoelectronic apparatus may include a substrate with a first side and a second side opposite the first side; a photodetector disposed on the first side of the substrate, the photodetector to convert a light signal into an electrical signal; and a dielectric metasurface lens etched into the second side of the substrate, the dielectric metasurface lens to collect incident light and focus it through the substrate onto the photodetector.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: January 11, 2022
    Assignee: Intel Corporation
    Inventors: John Heck, Harel Frish, Paul R. West
  • Patent number: 11211245
    Abstract: A device includes a layer including a first III-Nitride (III-N) material, a channel layer including a second III-N material, a release layer including nitrogen and a transition metal, where the release layer is between the first III-N material and the second III-N material. The device further includes a polarization layer including a third III-N material above the release layer, a gate structure above the polarization layer, a source structure and a drain structure on opposite sides of the gate structure where the source structure and the drain structure each include a fourth III-N material. The device further includes a source contact on the source structure and a drain contact on the drain structure.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: December 28, 2021
    Assignee: Intel Corporation
    Inventors: Khaled Ahmed, Anup Pancholi, John Heck, Thomas Sounart, Harel Frish, Sansaptak Dasgupta
  • Publication number: 20210375620
    Abstract: A device includes a layer including a first III-Nitride (III-N) material, a channel layer including a second III-N material, a release layer including nitrogen and a transition metal, where the release layer is between the first III-N material and the second III-N material. The device further includes a polarization layer including a third III-N material above the release layer, a gate structure above the polarization layer, a source structure and a drain structure on opposite sides of the gate structure where the source structure and the drain structure each include a fourth III-N material. The device further includes a source contact on the source structure and a drain contact on the drain structure.
    Type: Application
    Filed: June 2, 2020
    Publication date: December 2, 2021
    Applicant: Intel Corporation
    Inventors: Khaled Ahmed, Anup Pancholi, John Heck, Thomas Sounart, Harel Frish, Sansaptak Dasgupta
  • Patent number: 11175451
    Abstract: Embodiments include apparatuses, methods, and systems including a semiconductor photonic device having a waveguide disposed above a substrate. The waveguide has a first section including amorphous silicon with a first refractive index, and a second section including crystalline silicon with a second refractive index different from the first refractive index. The semiconductor photonic device further includes a heat element at a vicinity of the first section of the waveguide. The heat element is arranged to generate heat to transform the amorphous silicon of the first section of the waveguide to partially or completely crystallized crystalline silicon with a third refractive index. The amorphous silicon in the first section may be formed with silicon lattice defects caused by an element implanted into the first section. Other embodiments may also be described and claimed.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: November 16, 2021
    Assignee: Intel Corporation
    Inventors: Hasitha Jayatilleka, Harel Frish, Ranjeet Kumar, Haisheng Rong, John Heck
  • Publication number: 20210318561
    Abstract: A method may include: forming a base layer on a substrate; forming a waveguide assembly on the base layer, where the waveguide assembly is surrounded by a cladding layer; forming a trench opening through the cladding layer and the base layer; forming an undercut void by etching the substrate through the trench opening, where the undercut void extends under the waveguide assembly and the base layer; and filling the trench opening with a filler to seal off the undercut void. Other embodiments are described and claimed.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 14, 2021
    Inventors: Meer Nazmus Sakib, Saeed Fathololoumi, Harel Frish, John Heck, Eddie Bononcini, Reece Defrees, Stanley J. Dobek, Aliasghar Eftekhar, Walter Garay, Lingtao Liu, Wei Qian