Patents by Inventor John J. Drab

John J. Drab has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11854879
    Abstract: A Cu3Sn electrical interconnect and method of making same in an electrical device, such as for hybrid bond 3D-integration of the electrical device with one or more other electrical devices. The method of forming the Cu3Sn electrical interconnect includes: depositing a Sn layer in the via hole; depositing a Cu layer atop and in contact with the Sn layer; and heating the Sn layer and the Cu layer such that the Sn and Cu layers diffuse together to form a Cu3Sn interconnect in the via hole. During the heating, a diffusion front between the Sn and Cu layers moves in a direction toward the Cu layer as initially deposited, such that any remaining Cu layer or any voids formed during the diffusion are at an upper region of the formed Cu3Sn interconnect in the via hole, thereby allowing such voids or remaining material to be easily removed.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: December 26, 2023
    Assignee: Raytheon Company
    Inventors: Andrew Clarke, John J. Drab, Faye Walker
  • Patent number: 11659660
    Abstract: A through-wafer via substrate includes a substrate having an intermediate layer and a bonding layer formed on a surface of the intermediate layer. A via cavity extends through the bonding layer and into the intermediate layer, and a stress buffer liner is deposited directly on inner sidewalls and a base of the via cavity. An electrically conductive through-wafer via is disposed in the via cavity such that the stress buffer liner is interposed completely between the intermediate layer and the through-wafer via.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: May 23, 2023
    Assignee: RAYTHEON COMPANY
    Inventors: Christine Frandsen, John J. Drab, Andrew Clarke
  • Publication number: 20220239383
    Abstract: A communication system includes an antenna assembly. The antenna assembly includes an optical communication layer including a plurality of electro-optical (EO) antennas for communicating via an EO signal and a radio-frequency communication layer including a plurality of radio frequency (RF) antennas for communicating via an RF signal. A processor operates the antenna assembly to communicate via one or both of the EO signal and the RF signal.
    Type: Application
    Filed: January 25, 2021
    Publication date: July 28, 2022
    Inventors: Matthew C. Thomas, John J. Drab, Theodore Mark Kellum
  • Patent number: 11387916
    Abstract: A communication system includes an antenna assembly. The antenna assembly includes an optical communication layer including a plurality of electro-optical (EO) antennas for communicating via an EO signal and a radio-frequency communication layer including a plurality of radio frequency (RF) antennas for communicating via an RF signal. A processor operates the antenna assembly to communicate via one or both of the EO signal and the RF signal.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: July 12, 2022
    Assignee: RAYTHEON COMPANY
    Inventors: Matthew C. Thomas, John J. Drab, Theodore Mark Kellum
  • Patent number: 11177155
    Abstract: A method of transferring an integrated circuit (IC) onto an alternative substrate is provided at a wafer level to enable coefficient of thermal expansion (CTE) matching for a circuit layer to a different material. The method is executable relative to a wafer with a circuit layer, a first major surface, a second major surface opposite the first major surface, and a substrate affixed to the first major surface. The method includes temporarily bonding a handle to the second major surface, removing a majority of the substrate to expose the first major surface and bonding a second substrate to the first major surface with deposited bonding material.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: November 16, 2021
    Assignee: RAYTHEON COMPANY
    Inventor: John J. Drab
  • Publication number: 20210265206
    Abstract: A Cu3Sn electrical interconnect and method of making same in an electrical device, such as for hybrid bond 3D-integration of the electrical device with one or more other electrical devices. The method of forming the Cu3Sn electrical interconnect includes: depositing a Sn layer in the via hole; depositing a Cu layer atop and in contact with the Sn layer; and heating the Sn layer and the Cu layer such that the Sn and Cu layers diffuse together to form a Cu3Sn interconnect in the via hole. During the heating, a diffusion front between the Sn and Cu layers moves in a direction toward the Cu layer as initially deposited, such that any remaining Cu layer or any voids formed during the diffusion are at an upper region of the formed Cu3Sn interconnect in the via hole, thereby allowing such voids or remaining material to be easily removed.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 26, 2021
    Inventors: Andrew Clarke, John J. Drab, Faye Walker
  • Publication number: 20210136915
    Abstract: A through-wafer via substrate includes a substrate having an intermediate layer and a bonding layer formed on a surface of the intermediate layer. A via cavity extends through the bonding layer and into the intermediate layer, and a stress buffer liner is deposited directly on inner sidewalls and a base of the via cavity. An electrically conductive through-wafer via is disposed in the via cavity such that the stress buffer liner is interposed completely between the intermediate layer and the through-wafer via.
    Type: Application
    Filed: November 1, 2019
    Publication date: May 6, 2021
    Inventors: Christine Frandsen, John J. Drab, Andrew Clarke
  • Patent number: 10971538
    Abstract: A semiconductor structure having: a silicon structure; and a plurality of laterally spaced PiN diodes formed in the silicon structure; and a surface of the silicon structure configured to reduce reverse bias leakage current through the PiN diodes. In one embodiment, a gate electrode structures is disposed on a surface of the silicon structure, the gate electrode structure having portions disposed between adjacent pairs of the diodes, the gate structure being biased to prevent leakage current through the diodes.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: April 6, 2021
    Assignee: Raytheon Company
    Inventors: John J. Drab, Justin Gordon Adams Wehner, Christian M. Boemler
  • Patent number: 10784234
    Abstract: Structures and methods of fabricating semiconductor wafer assemblies that encapsulate one or die in a cavity etched into an oxide bonded semiconductor wafer stack. The methods generally include the steps of positioning the die in the cavity, mechanically and electrically mounting the die to the wafer stack, and encapsulating the die within the cavity by bonding a lid wafer to the wafer stack in one of multiple ways. Semiconductor processing steps are applied to construct the assemblies (e.g., deposition, annealing, chemical and mechanical polishing, etching, etc.) and connecting the die (e.g., bump bonding, wire interconnecting, ultrasonic bonding, oxide bonding, etc.) according to the embodiments described above.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: September 22, 2020
    Assignee: Raytheon Company
    Inventors: John J. Drab, Jason G. Milne
  • Patent number: 10679888
    Abstract: A foundry-agnostic post-processing method for a wafer is provided. The wafer includes an active surface, a substrate and an intermediate layer interposed between the active surface and the substrate. The method includes removing the wafer from an output yield of a wafer processing foundry, thinning the substrate to the intermediate layer or within microns of the intermediate layer to expose a new surface and bonding the new surface to an alternate material substrate which provides for enhanced device performance as compared to the substrate.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: June 9, 2020
    Assignee: RAYTHEON COMPANY
    Inventors: Mary A. Teshiba, John J. Drab
  • Publication number: 20200035539
    Abstract: A method of transferring an integrated circuit (IC) onto an alternative substrate is provided at a wafer level to enable coefficient of thermal expansion (CTE) matching for a circuit layer to a different material. The method is executable relative to a wafer with a circuit layer, a first major surface, a second major surface opposite the first major surface, and a substrate affixed to the first major surface. The method includes temporarily bonding a handle to the second major surface, removing a majority of the substrate to expose the first major surface and bonding a second substrate to the first major surface with deposited bonding material.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventor: John J. Drab
  • Patent number: 10541461
    Abstract: In one aspect, an active electronically scanned array (AESA) tile includes a radiator structure and oxide-bonded semiconductor wafers attached to the radiator structure and comprising a radio frequency (RF) manifold and a beam former. An RF signal path through the oxide-bonded wafers comprises a first portion that propagates toward the beam former and a second portion that propagates parallel to the beam former.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: January 21, 2020
    Assignee: Ratheon Company
    Inventors: Mary A. Teshiba, Jason G. Milne, Kevin C. Rolston, John J. Drab
  • Patent number: 10453731
    Abstract: A method of transferring an integrated circuit (IC) onto an alternative substrate is provided at a wafer level to enable coefficient of thermal expansion (CTE) matching for a circuit layer to a different material. The method is executable relative to a wafer with a circuit layer, a first major surface, a second major surface opposite the first major surface, and a substrate affixed to the first major surface. The method includes temporarily bonding a handle to the second major surface, removing a majority of the substrate to expose the first major surface and bonding a second substrate to the first major surface with deposited bonding material.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: October 22, 2019
    Assignee: RAYTHEON COMPANY
    Inventor: John J. Drab
  • Patent number: 10418406
    Abstract: Aspects and examples described herein provide a hybrid imaging sensor chip assembly for reducing undesired radiative transfer between a complementary metal-oxide semiconductor (CMOS) read-out integrated circuit (ROIC) and an optical detector, and methods of manufacturing a hybrid imaging sensor chip assembly. In one example, a hybrid imaging sensor chip assembly includes an optical detector configured to collect electromagnetic radiation incident thereon, a complementary metal-oxide semiconductor (CMOS) read-out integrated circuit (ROIC), and a radiation-shielding wafer interposed between the optical detector and the CMOS ROIC, the radiation-shielding wafer including a plurality of through wafer vias (TWVs) electrically coupled to the optical detector and the CMOS ROIC, the radiation-shielding wafer being positioned to prevent radiative transfer between the CMOS ROIC and the optical detector.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: September 17, 2019
    Assignee: RAYTHEON COMPANY
    Inventors: Sean P. Kilcoyne, John L. Vampola, Barry M. Starr, Chad W. Fulk, Christopher L. Mears, John J. Drab
  • Publication number: 20190267353
    Abstract: An electronic device integration method and integrated electronic device. The integration method may include the steps of preparing a first electronic device by forming an electrically conductive trace overlying a substrate, forming a barrier layer overlying the electrically conductive trace, forming one or more electrically conductive interconnects on the barrier layer, and forming a bonding layer overlying the trace and/or at least partially surrounding the one or more interconnects. The barrier layer is configured to prevent formation of an intermetallic compound between the trace and interconnect structures, while still enabling electrical communication between the trace and interconnect. The integration method may further include the steps of direct bonding the first electronic device to a second electronic device, direct bonding a third electronic device to the second electronic device, and so on.
    Type: Application
    Filed: May 10, 2019
    Publication date: August 29, 2019
    Inventors: Edward R. Soares, John J. Drab
  • Publication number: 20190259653
    Abstract: A foundry-agnostic post-processing method for a wafer is provided. The wafer includes an active surface, a substrate and an intermediate layer interposed between the active surface and the substrate. The method includes removing the wafer from an output yield of a wafer processing foundry, thinning the substrate to the intermediate layer or within microns of the intermediate layer to expose a new surface and bonding the new surface to an alternate material substrate which provides for enhanced device performance as compared to the substrate.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Inventors: Mary A. Teshiba, John J. Drab
  • Publication number: 20190221547
    Abstract: Structures and methods of fabricating semiconductor wafer assemblies that encapsulate one or die in a cavity etched into an oxide bonded semiconductor wafer stack. The methods generally include the steps of positioning the die in the cavity, mechanically and electrically mounting the die to the wafer stack, and encapsulating the die within the cavity by bonding a lid wafer to the wafer stack in one of multiple ways. Semiconductor processing steps are applied to construct the assemblies (e.g., deposition, annealing, chemical and mechanical polishing, etching, etc.) and connecting the die (e.g., bump bonding, wire interconnecting, ultrasonic bonding, oxide bonding, etc.) according to the embodiments described above.
    Type: Application
    Filed: March 25, 2019
    Publication date: July 18, 2019
    Applicant: Raytheon Company
    Inventors: John J. Drab, Jason G. Milne
  • Patent number: 10354910
    Abstract: A foundry-agnostic post-processing method for a wafer is provided. The wafer includes an active surface, a substrate and an intermediate layer interposed between the active surface and the substrate. The method includes removing the wafer from an output yield of a wafer processing foundry, thinning the substrate to the intermediate layer or within microns of the intermediate layer to expose a new surface and bonding the new surface to an alternate material substrate which provides for enhanced device performance as compared to the substrate.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: July 16, 2019
    Assignee: RAYTHEON COMPANY
    Inventors: Mary A. Teshiba, John J. Drab
  • Patent number: 10354975
    Abstract: An electronic device integration method and integrated electronic device. The integration method may include the steps of preparing a first electronic device by forming an electrically conductive trace overlying a substrate, forming a barrier layer overlying the electrically conductive trace, forming one or more electrically conductive interconnects on the barrier layer, and forming a bonding layer overlying the trace and/or at least partially surrounding the one or more interconnects. The barrier layer is configured to prevent formation of an intermetallic compound between the trace and interconnect structures, while still enabling electrical communication between the trace and interconnect. The integration method may further include the steps of direct bonding the first electronic device to a second electronic device, direct bonding a third electronic device to the second electronic device, and so on.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 16, 2019
    Assignee: Raytheon Company
    Inventors: Edward R. Soares, John J. Drab
  • Patent number: 10242967
    Abstract: Structures and methods of fabricating semiconductor wafer assemblies that encapsulate one or die in a cavity etched into an oxide bonded semiconductor wafer stack. The methods generally include the steps of positioning the die in the cavity, mechanically and electrically mounting the die to the wafer stack, and encapsulating the die within the cavity by bonding a lid wafer to the wafer stack in one of multiple ways. Semiconductor processing steps are applied to construct the assemblies (e.g., deposition, annealing, chemical and mechanical polishing, etching, etc.) and connecting the die (e.g., bump bonding, wire interconnecting, ultrasonic bonding, oxide bonding, etc.) according to the embodiments described above.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: March 26, 2019
    Assignee: Raytheon Company
    Inventors: John J. Drab, Jason G. Milne