Patents by Inventor John J. Hefti

John J. Hefti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100296973
    Abstract: A system operable to monitoring bio/chemical activities includes a first measurement probe, a second measurement probe and a comparator. The first measurement probe is operable to interrogate one or more physical properties of a sample at a first location of the sample, and to output, in response, a first measurement signal. The second measurement probe is operable to interrogate one or more physical properties of the sample at a second location of the sample, and to output, in response, a second measurement signal. The comparator is coupled to receive the first and second measurement signals, the comparator configured to output a difference signal comprising the difference between the first and second measurement signals, the difference signal corresponding to the difference in one or more bio/chemical activities occurring at the first location of the sample relative to the second location of the sample.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 25, 2010
    Inventors: John J. HEFTI, Dean M. Drako
  • Patent number: 7713477
    Abstract: A system operable to monitoring bio/chemical activities includes a first measurement probe, a second measurement probe and a comparator. The first measurement probe is operable to interrogate one or more physical properties of a sample at a first location of the sample, and to output, in response, a first measurement signal. The second measurement probe is operable to interrogate one or more physical properties of the sample at a second location of the sample, and to output, in response, a second measurement signal. The comparator is coupled to receive the first and second measurement signals, the comparator configured to output a difference signal comprising the difference between the first and second measurement signals, the difference signal corresponding to the difference in one or more bio/chemical activities occurring at the first location of the sample relative to the second location of the sample.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: May 11, 2010
    Inventors: John J. Hefti, Dean M. Drako
  • Patent number: 7083985
    Abstract: A coplanar waveguide biosensor and methods of use include a coplanar waveguide transmission line and a sample containment structure. The coplanar waveguide transmission line is operable to support the propagation of an electromagnetic signal and includes a signal line and one or more spaced apart ground elements. The signal line is configured to conduct a time-varying voltage, and the one or more ground elements are configured to maintain a time-invariant voltage, a detection region being formed between a portion of the signal line and a portion of at least one of the one or more ground elements. Detection methods are improved through the enhancement of the electric field in the detection region via impedance discontinuities in the signal line and ground elements. The sample containment structure intersects the detection region of the coplanar waveguide transmission line and includes a cavity configured to hold 1 ml or less of sample solution within the detection region.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: August 1, 2006
    Inventors: John J. Hefti, Barrett Bartell, Kurt Kramer, Mark A. Rhodes
  • Publication number: 20040170530
    Abstract: A system operable to monitoring bio/chemical activities includes a first measurement probe, a second measurement probe and a comparator. The first measurement probe is operable to interrogate one or more physical properties of a sample at a first location of the sample, and to output, in response, a first measurement signal. The second measurement probe is operable to interrogate one or more physical properties of the sample at a second location of the sample, and to output, in response, a second measurement signal. The comparator is coupled to receive the first and second measurement signals, the comparator configured to output a difference signal comprising the difference between the first and second measurement signals, the difference signal corresponding to the difference in one or more bio/chemical activities occurring at the first location of the sample relative to the second location of the sample.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 2, 2004
    Applicant: Prometheus BioSciences, Inc.
    Inventors: John J. Hefti, Dean M. Drako
  • Publication number: 20030040004
    Abstract: A coplanar waveguide biosensor and methods of use include a coplanar waveguide transmission line and a sample containment structure. The coplanar waveguide transmission line is operable to support the propagation of an electromagnetic signal and includes a signal line and one or more spaced apart ground elements. The signal line is configured to conduct a time-varying voltage, and the one or more ground elements are configured to maintain a time-invariant voltage, a detection region being formed between a portion of the signal line and a portion of at least one of the one or more ground elements. Detection methods are improved through the enhancement of the electric field in the detection region via impedance discontinuities in the signal line and ground elements. The sample containment structure intersects the detection region of the coplanar waveguide transmission line and includes a cavity configured to hold 1 ml or less of sample solution within the detection region.
    Type: Application
    Filed: August 23, 2002
    Publication date: February 27, 2003
    Applicant: Signature BioScience, Inc.
    Inventors: John J. Hefti, Barrett Bartell, Kurt Kramer, Mark A. Rhodes
  • Publication number: 20030032000
    Abstract: The present invention makes it possible to detect cellular activity in a sensitive and efficient manner without the use of labels and without knowing specifically what activity is being detected, although detection of specific activity is possible. The assay comprises detecting cellular activity by monitoring a change in a cellular system, comprising coupling an electromagnetic test signal in a specified frequency range to a sample in which a cellular event is being detected, whereby the sample interacts with and modulates the test signal to produce a modulated test signal; detecting the modulated test signal; and analyzing the modulated test signal to detect said cellular event. As such, the present invention is particularly useful in the detection of cellular activity induced by the presence of a test substance in the medium in which a cell is located and provides a number of advantages for lead optimization in the drug discovery field.
    Type: Application
    Filed: August 13, 2001
    Publication date: February 13, 2003
    Applicant: Signature BioScience Inc.
    Inventors: Vivian F. Liu, Prasanthi Bhagavatula, Uyen T. Do, John J. Hefti
  • Publication number: 20020177175
    Abstract: A coplanar waveguide biosensor includes a one-port coplanar waveguide transmission line and a sample containment structure. The coplanar waveguide transmission line is operable to support the propagation of an electromagnetic signal and includes a signal line and one or more spaced apart ground elements. The signal line is configured to conduct a time-varying voltage, and the one or more ground elements are configured to maintain a time-invariant voltage, a detection region being formed between a portion of the signal line and a portion of at least one of the one or more ground elements. The sample containment structure intersects the detection region of the one-port coplanar waveguide transmission line and includes a cavity configured to hold 1 ml or less of sample solution within the detection region.
    Type: Application
    Filed: August 13, 2001
    Publication date: November 28, 2002
    Inventors: John J. Hefti, Barrett J. Bartell
  • Publication number: 20020028461
    Abstract: The present invention provides a variety of methods of analyzing protein binding events using a system capable of directly detecting protein/ligand complexes based upon the dielectric properties of the complex. The system can be used in a variety of analyses involving protein binding events, such as screening ligand libraries, characterizing protein binding interactions, and identifying ligands. The system can also be utilized in diverse analytical and diagnostic applications.
    Type: Application
    Filed: August 6, 2001
    Publication date: March 7, 2002
    Inventor: John J. Hefti