Patents by Inventor John Jesse Soderberg

John Jesse Soderberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7349629
    Abstract: An optical network provides a digital interconnect fabric allowing nodes to seamlessly communicate with each other. Each node is connected to a bi-directional optical bus through passive optical interface devices. The optical interface devices route signals from each node onto the bus in both directions and also route signals traveling along the bus in either direction to each node. The optical interface devices and optical bus are passive and do not involve any regeneration of the electrical signals. The nodes are assigned wavelengths of transmission and have tunable receivers for selecting a wavelength of reception. The digital interconnect fabric facilitates Ethernet, Fibre Channel, and other digital communication protocols.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: March 25, 2008
    Assignee: Lockheed Martin Corporation
    Inventors: John Jesse Soderberg, Nelson Corby
  • Patent number: 7212140
    Abstract: A system and method for quantizing a photonic signal involves passing the photonic signal through a photonic crystal. The photonic crystal has localized defects for splitting the photonic signal into a plurality of quantized photonic components and for directing the quantized photonic components to a set of optical detectors. A digital conversion of the photonic signal can occur by performing a threshold comparison of the quantized components, either in the electrical domain through comparators or in the optical domain through optical limiters.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: May 1, 2007
    Assignee: Lockheed Martin Corporation
    Inventors: John Jesse Soderberg, Kelvin Ma
  • Patent number: 7085497
    Abstract: A communication system includes an optical “LAN” (50) interconnecting a plurality of information sources (16a) and sinks (22a) with a light-to-electrical converter (36a) associated with an electrical RF transmitters (32a) and an RF-to-light converter (38a) to a receiver (34a). The transmitter is coupled by way of electrical-to-light converter (46a), and the receiver is coupled by way of light-to-electrical converter (44a), and by way of a directional coupler (76a), to an end of an optical bus (74a), so that light signals representing signals to be transmitted flow in one direction, and light signals representing received signals flow in the other direction through the bus. A directional coupler (72a) at the other end of the optical bus routes the transmit light signals to a light-to-RF converter (47a) which feeds a sink or antenna (12a), and received signals from a source or antenna are routed by way of an RF-to-light converter (40a) and the directional coupler (72a) onto the optical bus (74a).
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: August 1, 2006
    Assignee: Lockheed Martin Corporation
    Inventors: Jerome Johnson Tiemann, Richard Louis Frey, William Sven Barquist, Jr., William Taylor Lotshaw, Sandra Freedman Feldman, John Jesse Soderberg, George Allan Whittaker
  • Patent number: 7054599
    Abstract: A radio and method of making the radio is disclosed having a first set of radio components for processing analog signals in a radio transmission and a second set of radio components for processing digital signals in a radio transmission. The radio comprises a substrate base support, and at least one pocket formed within the substrate. The radio comprises at least one processor, each of the at least one processor being within a corresponding one of the at least one pocket for modulating a radio signal into one of a plurality of waveforms based on a software instruction set. Each of the at least one processor being in electronic communication with both of the first and second sets of the radio components. A dielectric layer covers a top surface of the substrate and each of the at least one processor. A plurality of vias are formed in the dielectric layer to expose selected portions of each of the at least one processor.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: May 30, 2006
    Assignee: Lockheed Martin Corporation
    Inventors: Kelvin Ma, Richard Louis Frey, Michael Joseph Mahony, John Jesse Soderberg
  • Publication number: 20040224647
    Abstract: A radio and method of making the radio is disclosed having a first set of radio components for processing analog signals in a radio transmission and a second set of radio components for processing digital signals in a radio transmission. The radio comprises a substrate base support, and at least one pocket formed within the substrate. The radio comprises at least one processor, each of the at least one processor being within a corresponding one of the at least one pocket for modulating a radio signal into one of a plurality of waveforms based on a software instruction set. Each of the at least one processor being in electronic communication with both of the first and second sets of the radio components. A dielectric layer covers a top surface of the substrate and each of the at least one processor. A plurality of vias are formed in the dielectric layer to expose selected portions of each of the at least one processor.
    Type: Application
    Filed: May 8, 2003
    Publication date: November 11, 2004
    Applicant: Lockheed Martin Corporation
    Inventors: Kelvin Ma, Richard Louis Frey, Michael Joseph Mahony, John Jesse Soderberg
  • Publication number: 20030198475
    Abstract: A communication system includes an optical “LAN” (50) interconnecting a plurality of information sources (16a) and sinks (22a) with a light-to-electrical converter (36a) associated with an electrical RF transmitters (32a) and an RF-to-light converter (38a) to a receiver (34a). The transmitter is coupled by way of electrical-to-light converter (46a), and the receiver is coupled by way of light-to-electrical converter (44a), and by way of a directional coupler (76a), to an end of an optical bus (74a), so that light signals representing signals to be transmitted flow in one direction, and light signals representing received signals flow in the other direction through the bus. A directional coupler (72a) at the other end of the optical bus routes the transmit light signals to a light-to-RF converter (47a) which feeds a sink or antenna (12a), and received signals from a source or antenna are routed by way of an RF-to-light converter (40a) and the directional coupler (72a) onto the optical bus (74a).
    Type: Application
    Filed: April 3, 2002
    Publication date: October 23, 2003
    Inventors: Jerome Johnson Tiemann, Richard Louis Frey, William Sven Barquist, William Taylor Lotshaw, Sandra Freedman Feldman, John Jesse Soderberg, George Allan Whittaker
  • Patent number: 6518923
    Abstract: An active sampler antenna capable of transmitting signals is disclosed. The active sampler antenna includes a first set of conducting surfaces, a second set of conducting surfaces, a power source, and multiple switches. The second set of conducting surfaces is located substantially parallel to the first set of conducting surfaces. The power source has two terminals, namely, a first terminal and a second terminal. The first terminal of the power source is connected to the second set of conducting surfaces. Each of the switches is connected between a respective one of the first set of conducting surfaces and the second terminal of the power source. The switches allows a defined amount and timing of charges to be delivered from the power source to the first set of conducting surface for signal transmissions.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: February 11, 2003
    Assignee: Lockheed Martin Corporation
    Inventors: William Sven Barquist, William Walter Anderson, George Allan Whittaker, Thomas John Rohrer, John Jesse Soderberg, John McGinnis, Michael Gregory Abernathy
  • Publication number: 20030001791
    Abstract: An active sampler antenna capable of transmitting signals is disclosed. The active sampler antenna includes a first set of conducting surfaces, a second set of conducting surfaces, a power source, and multiple switches. The second set of conducting surfaces is located substantially parallel to the first set of conducting surfaces. The power source has two terminals, namely, a first terminal and a second terminal. The first terminal of the power source is connected to the second set of conducting surfaces. Each of the switches is connected between a respective one of the first set of conducting surfaces and the second terminal of the power source. The switches allows a defined amount and timing of charges to be delivered from the power source to the first set of conducting surface for signal transmissions.
    Type: Application
    Filed: June 28, 2001
    Publication date: January 2, 2003
    Applicant: Lockheed Martin Corporation
    Inventors: William Sven Barquist, William Walter Anderson, George Allan Whittaker, Thomas John Rohrer, John Jesse Soderberg, John McGinnis, Michael Gregory Abernathy