Patents by Inventor John Ko

John Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240090890
    Abstract: Disclosed herein are methods and devices for securing soft tissue to a rigid material such as bone. A tissue capture anchor is described that includes an anchor body and a spreader such that tissue may be captured or compressed between outside surfaces on the anchor and spreader and inside surfaces of a bone hole to secure the tissue within the hole. A bone anchor is described that includes an anchor body with expandable tines and a spreader that expands the tines into bone. The spreader captures tissue via a suture loop at the distal end of the bone anchor. Also described is an inserter that can be used to insert the anchor into bone and move the spreader within the anchor to expand the anchor and capture the tissue between the anchor and the bone. Methods are described that allow the use of bone anchors to secure tissue to bone.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Applicant: ConMed Corporation
    Inventors: John P. Greelis, Malcolm Heaven, Michael Ko, Mikxay Sirivong
  • Publication number: 20220373209
    Abstract: A system for climate control comprises a controller, comprising a processor and a non-transitory computer-readable medium with instructions stored thereon, a plurality of sensors communicatively connected to the controller, and at least one HVAC component communicatively connected to the controller, wherein the instructions, when executed by the processor, perform steps comprising receiving sensor data from at least one sensor of the plurality of sensors, executing a machine learning model using the received sensor data as inputs, calculating a predicted temperature, humidity, or occupancy state from the machine learning model, and sending a control instruction to the at least one HVAC component based on the calculated temperature, humidity, or occupancy state. A method for training a machine learning algorithm for a climate control system and a method for HVAC control in a building are also described.
    Type: Application
    Filed: May 21, 2021
    Publication date: November 24, 2022
    Inventor: John Ko
  • Publication number: 20220026101
    Abstract: An intelligent air management system comprises an HVAC unit, a smart duct comprising an electromechanically actuated damper, a power supply connected to the smart duct, a controller communicatively connected to the smart duct and at least one room sensor positioned in a room, and a vent fluidly connected to the smart duct and positioned in the room, wherein the controller is configured to open and close the electromechanically actuated damper in response to measurements from the at least one room sensor. A method of controlling room temperature in a multi-room structure is also described.
    Type: Application
    Filed: October 12, 2021
    Publication date: January 27, 2022
    Inventor: John Ko
  • Patent number: 10830480
    Abstract: A system for controlling airflow into a single room includes a duct having a controllable damper, fluidly connected to the room, a controller connected to the damper, configured to open and close the damper, at least one sensor communicatively connected to the controller, positioned in the room and configured to measure a parameter in the room, at least one portable computing device communicatively connected to the sensor and the controller, and control logic stored as instructions on a non-transitory computer readable medium, the instructions configured to open and close the damper in response to a measurement received from the at least one sensor. A method for controlling a damper in a duct fluidly connected to a room is also described.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: November 10, 2020
    Assignee: Komfort IQ, Inc.
    Inventor: John Ko
  • Publication number: 20200080745
    Abstract: A system for controlling airflow into a single room includes a duct having a controllable damper, fluidly connected to the room, a controller connected to the damper, configured to open and close the damper, at least one sensor communicatively connected to the controller, positioned in the room and configured to measure a parameter in the room, at least one portable computing device communicatively connected to the sensor and the controller, and control logic stored as instructions on a non-transitory computer readable medium, the instructions configured to open and close the damper in response to a measurement received from the at least one sensor. A method for controlling a damper in a duct fluidly connected to a room is also described.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventor: John Ko
  • Publication number: 20190257537
    Abstract: A smart duct comprises an inlet, an outlet, a damper positioned between the inlet and the outlet, an electromechanical actuator configured to open and close the damper, and a controller configured to operate the electromechanical actuator and retrieve measurements from the sensor and to receive instructions from a central HVAC controller via a communication channel.
    Type: Application
    Filed: July 20, 2018
    Publication date: August 22, 2019
    Inventor: John Ko
  • Publication number: 20190257545
    Abstract: An intelligent air management system comprises an HVAC unit, a smart duct comprising an electromechanically actuated damper, a power supply connected to the smart duct, a controller communicatively connected to the smart duct and at least one room sensor positioned in a room, and a vent fluidly connected to the smart duct and positioned in the room, wherein the controller is configured to open and close the electromechanically actuated damper in response to measurements from the at least one room sensor. A method of controlling room temperature in a multi-room structure is also described.
    Type: Application
    Filed: July 20, 2018
    Publication date: August 22, 2019
    Inventor: John Ko
  • Publication number: 20190049139
    Abstract: A hotel guest detection system includes an HVAC system, a thermostat communicatively connected to the HVAC system, at least one processing unit, at least one motion sensor, at least one door sensor, and at least one bed sensor configured to determine whether or not a guest is in a bed. The bed sensor, thermostat, and bed sensor are communicatively connected to the processing unit, and the processing unit is configured to manipulate a setting of the thermostat based on measurements obtained from the bed sensor and the motion sensor. A method of detecting guests in a hotel room is also described.
    Type: Application
    Filed: June 15, 2018
    Publication date: February 14, 2019
    Inventor: John Ko
  • Publication number: 20070168280
    Abstract: This novel invention consists of a small, portable electronic device that is used to transfer monetary value in all situations where other forms of money are currently used, including but not limited to: paper money, credit cards, and checks. The electronic device, which is linked to a main server to which all businesses and banks are also connected, is a revolutionary way to make transactions more secure, more convenient, while also serving as a tracking device for the government.
    Type: Application
    Filed: January 13, 2006
    Publication date: July 19, 2007
    Inventor: John Ko
  • Patent number: 6013161
    Abstract: A Co--Pt based magnetic alloy which has been doped with a relatively high amount of nitrogen, e.g., at or above 1 at. % is obtained having high coercivity, for example in the range of 1400 Oe or above, and an increased signal-to-noise ratio as compared to the same Co--Pt based alloy which has not been doped with nitrogen. The alloy is vacuum deposited, for example, by sputtering, and the nitrogen may be introduced from the sputtering gas or from the sputtering target. Other low-solubility elements providing the grain uniformity and isolation include: B, P, S, C, Si, As, Se and Te.
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: January 11, 2000
    Assignee: Komag, Incorporated
    Inventors: Tu Chen, Tsutomu Tom Yamashita, John Ko-Jen Chen, Rajiv Yadav Ranjan, Keith Kadokura, Ting Joseph Yuen
  • Patent number: 5908514
    Abstract: A new magnetic alloy exhibits high Hc and Ms while exhibiting excellent corrosion resistance, thereby providing ideal physical properties for high density recording applications. Other parameters of the media, such as SNR, PW50, and S are at least maintained, if not also improved. The alloy contains cobalt and up to 10 at. % Ni, up to 20 at. % Pt, up to 10 at. % Ta, up to 10 at. % Ti, and optionally up to 6 at. % B. The ratio of the tantalum to titanium in the alloy is between 3:1 and 1:3. The alloy is deposited by vacuum deposition (typically sputtering) on a similarly deposited non-magnetic alloy under layer. Nitrogen and/or oxygen may be introduced into the alloy during deposition to improve SNR. Other corrosion-resistant thin film alloys may also be obtained by the inclusion of Ta and Ti.
    Type: Grant
    Filed: October 24, 1996
    Date of Patent: June 1, 1999
    Inventors: Rajiv Yadav Ranjan, Tu Chen, Tsutomu Tom Yamashita, John Ko-Jen Chen
  • Patent number: 5851688
    Abstract: A Co--Pt based magnetic alloy which has been doped with a relatively high amount of nitrogen, e.g., at or above 1 at. % is obtained having high coercivity, for example in the range of 1400 Oe or above, and an increased signal-to-noise ratio as compared to the same Co--Pt based alloy which has not been doped with nitrogen. The alloy is vacuum deposited, for example, by sputtering, and the nitrogen may be introduced from the sputtering gas or from the sputtering target. Other low-solubility elements providing the grain uniformity and isolation include: B, P, S, C, Si, As, Se and Te.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: December 22, 1998
    Assignee: Komag, Inc.
    Inventors: Tu Chen, Tsutomu Tom Yamashita, John Ko-Jen Chen, Rajiv Yadav Ranjan, Keith Kadokura, Ting Joseph Yuen
  • Patent number: 5658659
    Abstract: Media according to the present invention is comprised of individual magnetic grains as small as 300 .ANG. or smaller in diameter, which are uniformly spaced apart by a distance between 5 and 50 .ANG. by a solid segregant. This media will typically exhibit coercivity and remanent coercivity squareness of at least 0.8 each, a switching field distribution of less than 0.2, and a coercivity of at least 1500 Oe (with a minimum required Pt content), while simultaneously providing the lowest media jitter noise for optimum magnetic performance. The media is deposited at a low partial pressure of water and in the presence of an optimum amount of contributant gas on a doped nucleation layer for grain growth control.
    Type: Grant
    Filed: August 5, 1994
    Date of Patent: August 19, 1997
    Assignee: Komag, Inc.
    Inventors: Tu Chen, Rajiv Yadav Ranjan, Tsutomu Tom Yamashita, Miaogen Lu, Keith Kadokura, John Ko-Jen Chen, Ting Joseph Yuen
  • Patent number: RE37748
    Abstract: A Co-Pt based magnetic alloy which has been doped with a relatively high amount of nitrogen, e.g., or above 1 at. % is obtained having high coercivity, for example in the range of 1400 Oe or above, and an increased signal-to-noise ratio as compared to the same Co-Pt based alloy which has not been doped with nitrogen. The alloy is vacuum deposited, for example, by sputtering, and the nitrogen may be introduced from the sputtering gas or from the sputtering target.
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: June 18, 2002
    Assignee: Komag, Inc.
    Inventors: Tu Chen, Tsutomu Tom Yamashita, Rajiv Yadav Ranjan, John Ko-Chen Chen, Keith Kadokura, Ting Joseph Yuen
  • Patent number: RE38544
    Abstract: A Co-Pt based magnetic alloy which has been doped with a relatively high amount of nitrogen, e.g., or above 1 at. % is obtained having high coercivity, for example in the range of 1400 Oe or above, and an increased signal-to-noise ratio as compared to the same Co-Pt based alloy which has not been doped with nitrogen. The alloy is vacuum deposited, for example, by sputtering, and the nitrogen may be introduced from the sputtering gas or from the sputtering target. Other low-solubility elements providing the grain uniformity and isolation include: B, P, S, C, Si, As, Se and Te.
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: July 6, 2004
    Assignee: Komag, Inc.
    Inventors: Tu Chen, Tsutomu Tom Yamashita, Rajiv Yadav Ranjan, John Ko-Chen Chen, Keith Kadokura, Ting Joseph Yuen