Patents by Inventor John Kwik

John Kwik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11788038
    Abstract: The present invention relates generally to corn dry-milling, and more specifically, to a method and system for removing insoluble solids mid-evaporation in a corn (or similar carbohydrate-containing grain) dry milling process for making alcohol, such as ethanol, and/or other biofuels/biochemicals. In one example, the method for removing residual insoluble solids in a grain dry milling process includes separating a whole stillage byproduct into an insoluble solids portion and a solubles portion, which includes residual insoluble solids. Then, the solubles portion is subjected to a first evaporation, via one or more evaporators, to remove liquid from the solubles portion to define a concentrated solubles portion. After the first evaporation, the residual insoluble solids are separated from the concentrated solubles portion. And thereafter, the concentrated solubles portion is subjected to a second evaporation, via one or more evaporators, to remove additional liquid from the concentrated solubles portion.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: October 17, 2023
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Michael Franko, John Kwik
  • Publication number: 20230203552
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Application
    Filed: March 3, 2023
    Publication date: June 29, 2023
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Patent number: 11597955
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 7, 2023
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Publication number: 20220361525
    Abstract: A method and system are disclosed for producing a protein and fiber feed product from a whole stillage byproduct produced in a corn dry milling process for making alcohol, such as ethanol, and/or other biofuels/biochemicals. In one embodiment, the method includes separating the whole stillage byproduct into an insoluble solids portion and a centrate (solubles) portion. Thereafter, a fine fiber and protein portion may be separated from the centrate (solubles) portion. The fine fiber and protein portion may be dewatered to provide a protein and fiber feed product. In one example, the protein and fiber feed product can include insoluble solids, such as wet or dry distiller's grains with or without solubles. The resulting protein and fiber feed product may be sold and/or used as rumen feed, swine feed, chicken feed, aqua feed, food uses, or have other uses, including pharmaceutical and/or chemical usage, for example.
    Type: Application
    Filed: April 19, 2022
    Publication date: November 17, 2022
    Inventors: Neal Jakel, John Kwik
  • Patent number: 11447806
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: September 20, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Patent number: 11230504
    Abstract: Method for producing a fertilizer or herbicide from a whole stillage byproduct produced in a corn dry-milling process for making alcohol and system therefore is disclosed. In one embodiment, the method includes separating the whole stillage byproduct into an insoluble solids portion and a thin stillage portion. Thereafter, the thin stillage portion can be dewatered to provide a water soluble solids portion and a dewatered protein portion, which may be optionally dried. The protein in the resulting protein portion can serve as a nitrogen source and sulfur containing amino acids can serve as a sulfur source, which can be desirable components in fertilizers and herbicides. To that end, the resulting protein portion directly may be sold and/or used as a fertilizer or herbicide or can be combined with other components to provide the fertilizer or herbicide.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: January 25, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Michael Franko, Neal Jakel, John Kwik
  • Patent number: 11220663
    Abstract: The present invention is directed to improved systems and processes for clarifying a thin stillage stream in a biofuel production process, such as a dry grind alcohol production process, that removes desirable amounts of insoluble solids from at least a portion of the thin stillage stream, thereby realizing any number of process enhancements.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: January 11, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Franko
  • Publication number: 20210301310
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Application
    Filed: June 14, 2021
    Publication date: September 30, 2021
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Publication number: 20210301311
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Application
    Filed: June 14, 2021
    Publication date: September 30, 2021
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Publication number: 20210180093
    Abstract: A system and process is disclosed for adding pre-fermentation separated non-fermentables, e.g., fiber, germ/oil, and/or protein, to a post-fermentation stream in a corn (or similar carbohydrate-containing grain) dry milling process for making alcohol and/or other biofuels/biochemical. The process includes mixing grain particles with a liquid to produce a slurry having starch and non-fermentables. The slurry is subjected to liquefaction to convert the starch in the slurry to complex sugars and produce a liquefied stream including the complex sugars and non-fermentables. After liquefaction but prior to fermentation of simple sugars resulting from conversion of the complex sugars, the non-fermentables are separated out to define a non-fermentables portion and an aqueous solution including the complex and/or simple sugars. The simple sugars are fermented to provide a fermented stream. Then, the separated non-fermentables portion is reincorporated back into the process into a post-fermentation stream.
    Type: Application
    Filed: March 2, 2021
    Publication date: June 17, 2021
    Inventors: Michael Franko, John Kwik, Neal Jakel
  • Patent number: 11034987
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: June 15, 2021
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Publication number: 20210170420
    Abstract: A method and system for reducing the unfermentable solids content in a protein portion, via a counter current wash, at the back end of a corn dry milling process for making alcohol is disclosed. The method can include separating the whole stillage byproduct into an insoluble solids portion and a stillage (centrate) portion, which includes protein. Thereafter, the stillage portion can be separated into a water soluble solids portion and a protein portion. The protein portion may be mixed with clean water to wash and dilute the protein portion. The diluted protein portion may be dewatered to form a dewatered protein portion and a centrate. A portion of the centrate may be used as a protein counter current wash when the protein portion is being separated from the stillage portion. The protein counter current wash reduces the amount of unfermentable solids in the protein portion and the centrate.
    Type: Application
    Filed: February 18, 2021
    Publication date: June 10, 2021
    Inventors: Michael Hora, John Kwik, Neal Jakel
  • Publication number: 20210170419
    Abstract: A method and system for reducing the unfermentable solids content in a protein portion, via a counter current wash, at the back end of a corn dry milling process for making alcohol is disclosed. The method can include separating the whole stillage byproduct into an insoluble solids portion and a stillage (centrate) portion, which includes protein. Thereafter, the stillage portion can be separated into a water soluble solids portion and a protein portion. The protein portion may be mixed with clean water to wash and dilute the protein portion. The diluted protein portion may be dewatered to form a dewatered protein portion and a centrate. A portion of the centrate may be used as a protein counter current wash when the protein portion is being separated from the stillage portion. The protein counter current wash reduces the amount of unfermentable solids in the protein portion and the centrate.
    Type: Application
    Filed: February 18, 2021
    Publication date: June 10, 2021
    Inventors: Michael Hora, John Kwik, Neal Jakel
  • Patent number: 10995346
    Abstract: A system and process is disclosed for adding pre-fermentation separated non-fermentables, e.g., fiber, germ/oil, and/or protein, to a post-fermentation stream in a corn (or similar carbohydrate-containing grain) dry milling process for making alcohol and/or other biofuels/biochemical. The process includes mixing grain particles with a liquid to produce a slurry having starch and non-fermentables. The slurry is subjected to liquefaction to convert the starch in the slurry to complex sugars and produce a liquefied stream including the complex sugars and non-fermentables. After liquefaction but prior to fermentation of simple sugars resulting from conversion of the complex sugars, the non-fermentables are separated out to define a non-fermentables portion and an aqueous solution including the complex and/or simple sugars. The simple sugars are fermented to provide a fermented stream. Then, the separated non-fermentables portion is reincorporated back into the process into a post-fermentation stream.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: May 4, 2021
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Michael Franko, John Kwik, Neal Jakel
  • Publication number: 20210114951
    Abstract: Method for producing a fertilizer or herbicide from a whole stillage byproduct produced in a corn dry-milling process for making alcohol and system therefore is disclosed. In one embodiment, the method includes separating the whole stillage byproduct into an insoluble solids portion and a thin stillage portion. Thereafter, the thin stillage portion can be dewatered to provide a water soluble solids portion and a dewatered protein portion, which may be optionally dried. The protein in the resulting protein portion can serve as a nitrogen source and sulfur containing amino acids can serve as a sulfur source, which can be desirable components in fertilizers and herbicides. To that end, the resulting protein portion directly may be sold and/or used as a fertilizer or herbicide or can be combined with other components to provide the fertilizer or herbicide.
    Type: Application
    Filed: May 8, 2018
    Publication date: April 22, 2021
    Inventors: Michael Franko, Neal Jakel, John Kwik
  • Publication number: 20210062122
    Abstract: The present invention relates generally to corn dry-milling, and more specifically, to a method and system for removing insoluble solids mid-evaporation in a corn (or similar carbohydrate-containing grain) dry milling process for making alcohol, such as ethanol, and/or other biofuels/biochemicals. In one example, the method for removing residual insoluble solids in a grain dry milling process includes separating a whole stillage byproduct into an insoluble solids portion and a solubles portion, which includes residual insoluble solids. Then, the solubles portion is subjected to a first evaporation, via one or more evaporators, to remove liquid from the solubles portion to define a concentrated solubles portion. After the first evaporation, the residual insoluble solids are separated from the concentrated solubles portion. And thereafter, the concentrated solubles portion is subjected to a second evaporation, via one or more evaporators, to remove additional liquid from the concentrated solubles portion.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 4, 2021
    Inventors: Michael Franko, John Kwik
  • Patent number: 10926267
    Abstract: A method and system for reducing the unfermentable solids content in a protein portion, via a counter current wash, at the back end of a corn dry milling process for making alcohol is disclosed. The method can include separating the whole stillage byproduct into an insoluble solids portion and a stillage (centrate) portion, which includes protein. Thereafter, the stillage portion can be separated into a water soluble solids portion and a protein portion. The protein portion may be mixed with clean water to wash and dilute the protein portion. The diluted protein portion may be dewatered to form a dewatered protein portion and a centrate. A portion of the centrate may be used as a protein counter current wash when the protein portion is being separated from the stillage portion. The protein counter current wash reduces the amount of unfermentable solids in the protein portion and the centrate.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: February 23, 2021
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Michael Hora, John Kwik, Neal Jakel
  • Publication number: 20200199062
    Abstract: A method for separating one or more amino acids from a whole stillage byproduct produced in a corn dry milling process for making alcohol and system therefore is disclosed. In one embodiment, the method includes separating the whole stillage byproduct into an insoluble solids portion and a thin stillage portion, which include protein and amino acids. Thereafter, the thin stillage portion can be separated into a water soluble solids portion and a protein and amino acids portion. The resulting protein and amino acids portion can be separated into an amino acid(s) portion and a protein portion, both of which may be optionally dried, utilizing microfiltration, ultrafiltration, electrophoresis techniques/devices, or combinations thereof.
    Type: Application
    Filed: May 8, 2018
    Publication date: June 25, 2020
    Inventors: Michael Franko, Neal Jakel, John Kwik
  • Patent number: 10392590
    Abstract: A method and system for distilling alcohol in an alcohol production process is disclosed. The method can include fermenting a mixture of water and milled grain to produce alcohol-laden beer, which can be distilled in a beer column maintained at a subatmospheric pressure to produce a vapor, primarily including alcohol, and whole stillage. Stillage is separated from the whole stillage. Water is evaporated from the separated stillage to produce first-concentrated stillage and first effect steam. Water from the first-concentrated stillage is evaporated with heat from the first effect steam to produce second effect steam. In one embodiment, second effect steam can be used to supply sufficient heat to a side stripper for distilling the alcohol-laden beer. In another embodiment, the method can include generating steam from one or more steam generator to supply sufficient heat to the beer column for distilling the alcohol-laden beer.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: August 27, 2019
    Assignee: Fluid Quip Process Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Hora
  • Publication number: 20190160470
    Abstract: A method and system for reducing the unfermentable solids content in a protein portion, via a counter current wash, at the back end of a corn dry milling process for making alcohol is disclosed. The method can include separating the whole stillage byproduct into an insoluble solids portion and a stillage (centrate) portion, which includes protein. Thereafter, the stillage portion can be separated into a water soluble solids portion and a protein portion. The protein portion may be mixed with clean water to wash and dilute the protein portion. The diluted protein portion may be dewatered to form a dewatered protein portion and a centrate. A portion of the centrate may be used as a protein counter current wash when the protein portion is being separated from the stillage portion. The protein counter current wash reduces the amount of unfermentable solids in the protein portion and the centrate.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 30, 2019
    Inventors: Michael Hora, John Kwik, Neal Jakel