Patents by Inventor John L. Hoehne

John L. Hoehne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11591944
    Abstract: A controller for removing deposits in a vehicle is disclosed. The controller includes at least one processor and a memory storing instructions therein that, when executed by the at least one processor, cause the at least one processor to: determine an amount of deposits accumulated in the vehicle based on an amount of time; determine a combustion target for the vehicle in response to determining that the amount of deposits exceeds a deposit threshold; and modulate a fluid flow of the vehicle based on the determined combustion target.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: February 28, 2023
    Assignee: Cummins Inc.
    Inventors: John L. Hoehne, Paul Daniel Borisuk, Boopathi Singalandapuram Mahadevan, Joshua A. Lantz, Jeffrey W. Lewis, Snita Navnith Menon
  • Publication number: 20210285353
    Abstract: A controller for removing deposits in a vehicle is disclosed. The controller includes at least one processor and a memory storing instructions therein that, when executed by the at least one processor, cause the at least one processor to: determine an amount of deposits accumulated in the vehicle based on an amount of time; determine a combustion target for the vehicle in response to determining that the amount of deposits exceeds a deposit threshold; and modulate a fluid flow of the vehicle based on the determined combustion target.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 16, 2021
    Inventors: John L. Hoehne, Paul Daniel Borisuk, Boopathi Singalandapuram Mahadevan, Joshua A. Lantz, Jeffrey W. Lewis, Snita Navnith Menon
  • Patent number: 11015540
    Abstract: An apparatus comprises a first circuit and a second circuit. The first circuit is structured to determine that a combustion cylinder is operating in a transition period between an exhaust stroke and an intake stroke of the combustion cylinder. The second circuit is structured to provide an injection command during the transition period to a fuel injector associated with the combustion cylinder, the injection command being to inject fuel into a combustion chamber of the combustion cylinder such that at least a portion of the fuel escapes from the combustion chamber through an exhaust port of the combustion cylinder.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: May 25, 2021
    Assignee: Cummins Inc.
    Inventors: Chandan Mahato, John L. Hoehne, E. Nathan Linen, Shounak Mishra, Boopathi S. Mahadevan, Foy C. Henderson
  • Patent number: 10961889
    Abstract: Systems and methods for removing deposit in an aftertreatment system for an engine are disclosed herein. The method comprises determining an amount of deposits accumulated in the aftertreatment system, determining combustion targets for the engine in response to determining the amount of deposits exceeds a deposit threshold, and modulating an air mass flow for the engine based on the determined combustion targets. The air mass flow can be modulated by changing the position of the wastegate or the geometry of the variable geometry turbine (VGT).
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: March 30, 2021
    Assignee: Cummins Inc.
    Inventors: John L. Hoehne, Paul Daniel Borisuk, Boopathi Singalandapuram Mahadevan, Joshua A. Lantz, Jeffrey W. Lewis, Snita Navnith Menon
  • Publication number: 20200049084
    Abstract: An apparatus comprises a first circuit and a second circuit. The first circuit is structured to determine that a combustion cylinder is operating in a transition period between an exhaust stroke and an intake stroke of the combustion cylinder. The second circuit is structured to provide an injection command during the transition period to a fuel injector associated with the combustion cylinder, the injection command being to inject fuel into a combustion chamber of the combustion cylinder such that at least a portion of the fuel escapes from the combustion chamber through an exhaust port of the combustion cylinder.
    Type: Application
    Filed: October 3, 2017
    Publication date: February 13, 2020
    Applicant: Cummins Inc.
    Inventors: Chandan MAHATO, John L. HOEHNE, E. Nathan LINEN, Shounak MISHRA, Boopathi S. MAHADEVAN, Foy C. HENDERSON
  • Patent number: 10533514
    Abstract: A method of controlling a fuel injector comprises measuring a pressure in a cylinder of an engine with a pressure sensor and determining at least one of a crank angle and a crank speed with a crank sensor. The method also comprises calculating a net indicated mean effective pressure of the cylinder from the measured value of the pressure sensor and the determined value of the crank sensor. Also, the method comprises adjusting a fueling parameter of a fuel injector for the cylinder in response to the difference between the calculated net indicated mean effective pressure and a reference mean effective pressure indicates a change in power of the engine. Alternatively, the method may adjust the fueling parameter based on a power feedback signal for the engine.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: January 14, 2020
    Assignee: Cummins Inc.
    Inventors: Phanindra V. Garimella, John L. Hoehne, Ian W. McGiffen, Chandan Mahato, Boopathi Singalandapuram Mahadevan, Pagalavan Mathari Bakthavatsalam, Travis Alva Anderson
  • Patent number: 10480441
    Abstract: A system and method for controlling a temperature of an exhaust gas at an inlet of a selective catalytic reduction system during at least certain low air density conditions. The system may detect an air density value upstream of an internal combustion engine of an engine system, such as, for example, at an inlet of a compressor. Using the detected air density, one of a plurality of relationships between an engine speed and an outputted engine power, as a function of the detected air density value, may be selected for use in determining what combination of engine speed(s) and/or engine power(s) will produce an exhaust gas that is within a target exhaust gas temperature. Using the selected relationship, at least one of the engine speed and the engine power may be adjusted to at least assist in attaining the target exhaust gas temperature.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: November 19, 2019
    Assignee: Cummins Inc.
    Inventors: John L. Hoehne, Ian W. McGiffen, Chandan Mahato, Paul Daniel Borisuk, Boopathi Singalandapuram Mahadevan
  • Publication number: 20190226420
    Abstract: A method of controlling a fuel injector comprises measuring a pressure in a cylinder of an engine with a pressure sensor and determining at least one of a crank angle and a crank speed with a crank sensor. The method also comprises calculating a net indicated mean effective pressure of the cylinder from the measured value of the pressure sensor and the determined value of the crank sensor. Also, the method comprises adjusting a fueling parameter of a fuel injector for the cylinder in response to the difference between the calculated net indicated mean effective pressure and a reference mean effective pressure indicates a change in power of the engine. Alternatively, the method may adjust the fueling parameter based on a power feedback signal for the engine.
    Type: Application
    Filed: June 2, 2017
    Publication date: July 25, 2019
    Inventors: Phanindra V. Garimella, John L. Hoehne, Ian W. McGiffen, Chandan Mahato, Boopathi Singalandapuram Mahadevan, Pagalavan Mathari Bakthavatsalam, Travis Alva Anderson
  • Publication number: 20190162096
    Abstract: Systems and methods for removing deposit in an aftertreatment system for an engine are disclosed herein. The method comprises determining an amount of deposits accumulated in the aftertreatment system, determining combustion targets for the engine in response to determining the amount of deposits exceeds a deposit threshold, and modulating an air mass flow for the engine based on the determined combustion targets. The air mass flow can be modulated by changing the position of the wastegate or the geometry of the variable geometry turbine (VGT).
    Type: Application
    Filed: July 27, 2017
    Publication date: May 30, 2019
    Applicant: Cummins Inc.
    Inventors: John L. Hoehne, Paul Daniel Borisuk, Boopathi Singalandapuram Mahadevan, Joshua A. Lantz, Jeffrey W. Lewis, Snita Navnith Menon
  • Publication number: 20180149105
    Abstract: A system and method for controlling a temperature of an exhaust gas at an inlet of a selective catalytic reduction system during at least certain low air density conditions. The system may detect an air density value upstream of an internal combustion engine of an engine system, such as, for example, at an inlet of a compressor. Using the detected air density, one of a plurality of relationships between an engine speed and an outputted engine power, as a function of the detected air density value, may be selected for use in determining what combination of engine speed(s) and/or engine power(s) will produce an exhaust gas that is within a target exhaust gas temperature. Using the selected relationship, at least one of the engine speed and the engine power may be adjusted to at least assist in attaining the target exhaust gas temperature.
    Type: Application
    Filed: January 18, 2018
    Publication date: May 31, 2018
    Inventors: John L. Hoehne, Ian W. McGiffen, Chandan Mahato, Paul Daniel Borisuk, Boopathi Singalandapuram Mahadevan
  • Patent number: 9587567
    Abstract: Various embodiments relate to a method of operating an engine system with injectors having nozzle sac volume. The engine system may be a four-stroke, high power engine having a high-pressure common-rail injection system. A number of engine cylinders to fire is selected based on a fuel injection quantity per selected engine cylinder such that a nitrogen oxides (NOx) emission is less than a first predetermined threshold and a smoke value is less than a second predetermined threshold. The fuel injection quantity per cylinder may be higher than a nominal fuel injection quantity to improve fuel injector spray characteristics. The exhaust can be mixed with fresh air blowout from deactivated cylinders to further reduce smoke value. The engine system is operated with a firing pattern for the selected number of cylinders to fire.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: March 7, 2017
    Assignee: CUMMINS INC.
    Inventors: Boopathi Singalandapuram Mahadevan, Chandan Mahato, John L. Hoehne, Ian W. McGiffen
  • Publication number: 20150377171
    Abstract: Various embodiments relate to a method of operating an engine system with injectors having nozzle sac volume. The engine system may be a four-stroke, high power engine having a high-pressure common-rail injection system. A number of engine cylinders to fire is selected based on a fuel injection quantity per selected engine cylinder such that a nitrogen oxides (NOx) emission is less than a first predetermined threshold and a smoke value is less than a second predetermined threshold. The fuel injection quantity per cylinder may be higher than a nominal fuel injection quantity to improve fuel injector spray characteristics. The exhaust can be mixed with fresh air blowout from deactivated cylinders to further reduce smoke value. The engine system is operated with a firing pattern for the selected number of cylinders to fire.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Inventors: Boopathi Singalandapuram Mahadevan, Chandan Mahato, John L. Hoehne, Ian W. McGiffen
  • Patent number: 6234149
    Abstract: An engine control system for optimizing a tradeoff between turbocharger lag and production of exhaust emissions including altitude and intake manifold air temperature compensation includes a turbocharger boost sensor, an engine speed sensor, an ambient pressure sensor and an intake manifold air temperature sensor, each providing appropriate sensor signals to a control computer. The control computer is operable to limit fueling signals supplied to the engine fuel system based on turbocharger boost, engine speed, ambient pressure and intake manifold air temperature to thereby optimize a tradeoff between turbocharger lag and production of black smoke and other exhaust emissions while compensating for changes in altitude and intake manifold air temperature.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: May 22, 2001
    Assignee: Cummins Engine Company, Inc.
    Inventors: John R. Mills, Ward R. Edwards, John L. Hoehne, David A. Bolis, Gary C. Salemme, Lawrence H. Becker