Patents by Inventor John Michael Snyder

John Michael Snyder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120268637
    Abstract: A mechanism is disclosed for capturing reflected rays from a surface. A first and second lens aligned along a same optical center axis are configured so that a beam of light collimated parallel to the lens center axis directed to a first side, is converged toward the lens center axis on a second side. A first light beam source between the first and second lenses directs a light beam toward the first lens parallel to the optical center axis. Second light beam source(s) on the second side of the first lens, direct a light beam toward a focal plane of the first lens at a desired angle. An image capturing component, at the second side of the second lens, has an image capture surface directed toward the second lens to capture images of the light reflected from a sample capture surface at the focal plane of the first lens.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 25, 2012
    Applicant: Microsoft Corporation
    Inventors: Jiaping Wang, Moshe Benezra, Xin Tong, John Michael Snyder, Baining Guo
  • Patent number: 8248613
    Abstract: A mechanism is disclosed for capturing reflected rays from a surface. A first and second lens aligned along a same optical center axis are configured so that a beam of light collimated parallel to the lens center axis directed to a first side, is converged toward the lens center axis on a second side. A first light beam source between the first and second lenses directs a light beam toward the first lens parallel to the optical center axis. Second light beam source(s) on the second side of the first lens, direct a light beam toward a focal plane of the first lens at a desired angle. An image capturing component, at the second side of the second lens, has an image capture surface directed toward the second lens to capture images of the light reflected from a sample capture surface at the focal plane of the first lens.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: August 21, 2012
    Assignee: Microsoft Corporation
    Inventors: Jiaping Wang, Moshe Benezra, Xin Tong, John Michael Snyder, Baining Guo
  • Publication number: 20110267619
    Abstract: A mechanism is disclosed for capturing reflected rays from a surface. A first and second lens aligned along a same optical center axis are configured so that a beam of light collimated parallel to the lens center axis directed to a first side, is converged toward the lens center axis on a second side. A first light beam source between the first and second lenses directs a light beam toward the first lens parallel to the optical center axis. Second light beam source(s) on the second side of the first lens, direct a light beam toward a focal plane of the first lens at a desired angle. An image capturing component, at the second side of the second lens, has an image capture surface directed toward the second lens to capture images of the light reflected from a sample capture surface at the focal plane of the first lens.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Applicant: Microsoft Corporation
    Inventors: Jiaping Wang, Moshe Benezra, Xin Tong, John Michael Snyder, Baining Guo
  • Patent number: 7956870
    Abstract: Systems and methods are provided for variable source rate sampling in connection with image rendering, which accumulate and resolve over all samples forward mapped to each pixel bin. In accordance with the invention, the textured surface to be rendered is sampled, or oversampled, at a variable rate that reflects variations in frequency among different regions, taking into account any transformation that will be applied to the surface prior to rendering and the view parameters of the display device, thus ensuring that each bin of the rendering process receives at least a predetermined minimum number of samples. A variety of image processing applications are contemplated wherein variable rate source sampling, and accumulation and resolution of forward mapped point samples can be applied, ranging from 3-D graphics applications to applications wherein images recorded in a recording/storage environment are mapped to the arbitrary requirements of a display environment.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: June 7, 2011
    Assignee: Microsoft Corporation
    Inventors: John Michael Snyder, John Turner Whitted, William Thomas Blank, Kirk Olynyk
  • Patent number: 7940269
    Abstract: A real-time algorithm for rendering of an inhomogeneous scattering medium such as fog with a surface object immersed therein is described. An input media animation is represented as a sequence of density fields. The algorithm computes surface reflectance of the surface object in the inhomogeneous scattering medium. The algorithm may also compute airlight of the inhomogeneous scattering medium. Several approximations are taken which lead to analytical solutions of quantities such as optical depth integrations and single scattering integrations, and a reduced number of integrations that need to be calculated. The resultant algorithm is able to render inhomogeneous media including their shadowing and scattering effects in real time. The algorithm may be adopted for a variety of light sources including point lights and environmental lights.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 10, 2011
    Assignee: Microsoft Corporation
    Inventors: Kun Zhou, Qiming Hou, Minmin Gong, John Michael Snyder, Baining Guo, Heung-Yeung Shum
  • Patent number: 7940268
    Abstract: A real-time algorithm for rendering an inhomogeneous scattering medium such as fog is described. An input media animation is represented as a sequence of density fields, each of which is decomposed into a weighted sum of a set of radial basis functions (RBFs) such as Gaussians. The algorithm computes airlight and surface reflectance of the inhomogeneous scattering medium. Several approximations are taken which lead to analytical solutions of quantities such as an optical depth integrations and single scattering integrations, and a reduced number of integrations that need to be calculated. The resultant algorithm is able to render inhomogeneous media including their shadowing and scattering effects in real time. The algorithm may be adopted for a variety of light sources including point lights and environmental lights.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 10, 2011
    Assignee: Microsoft Corporation
    Inventors: Kun Zhou, Qiming Hou, Minmin Gong, John Michael Snyder, Baining Guo, Heung-Yeung Shum
  • Publication number: 20110081023
    Abstract: Described herein are techniques pertaining to real-time propagation of an arbitrary audio signal in a fixed virtual environment with dynamic audio sources and receivers. A wave-based numerical simulator is configured to compute response signals in the virtual environment with respect to a sample signal at various source and receiver locations. The response signals are compressed and placed in the frequency domain to generate frequency responses. Such frequency responses are selectively convolved with the arbitrary audio signal to allow real-time propagation with moving sources and receivers in the virtual environment.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 7, 2011
    Applicant: MICROSOFT CORPORATION
    Inventors: Nikunj Raghuvanshi, John Michael Snyder, Ming Chieh Lin, Naga K. Govindaraju
  • Patent number: 7768524
    Abstract: Systems and methods are provided for variable source rate sampling in connection with image rendering, which accumulate and resolve over all samples forward mapped to each pixel bin. In accordance with the invention, the textured surface to be rendered is sampled, or oversampled, at a variable rate that reflects variations in frequency among different regions, taking into account any transformation that will be applied to the surface prior to rendering and the view parameters of the display device, thus ensuring that each bin of the rendering process receives at least a predetermined minimum number of samples. In one embodiment, the sampling rate is variably set such that each bin is assured to have at least one sample point. In another embodiment, a tiling approach to division of the surface is utilized.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: August 3, 2010
    Assignee: Microsoft Corporation
    Inventors: John Michael Snyder, John Turner Whitted, William Thomas Blank, Kirk Olynyk
  • Patent number: 7573474
    Abstract: Systems and methods are provided for optimizing the geometric stretch of a parametrization scheme. Given an arbitrary mesh, the systems and methods construct a progressive mesh (PM) such that all meshes in the PM sequence share a common texture parametrization. The systems and methods minimize geometric stretch, i.e., small texture distances mapped onto large surface distances, to balance sampling rates over all locations and directions on the surface. The systems and methods also minimize texture deviation, i.e., “slippage” error based on parametric correspondence, to obtain accurate textured mesh approximations. The technique(s) begin by partitioning the mesh into charts using planarity and compactness heuristics. Then, the technique(s) proceed by creating a stretch-minimizing parametrization within each chart, and by resizing the charts based on the resulting stretch. Then, the technique(s) simplify the mesh while respecting the chart boundaries.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: August 11, 2009
    Assignee: Microsoft Corporation
    Inventors: Hugues Herve Hoppe, John Michael Snyder, Pedro Vieira Sander, Steven Jacob Gortler
  • Publication number: 20090006052
    Abstract: A real-time algorithm for rendering of an inhomogeneous scattering medium such as fog with a surface object immersed therein is described. An input media animation is represented as a sequence of density fields. The algorithm computes surface reflectance of the surface object in the inhomogeneous scattering medium. The algorithm may also compute airlight of the inhomogeneous scattering medium. Several approximations are taken which lead to analytical solutions of quantities such as optical depth integrations and single scattering integrations, and a reduced number of integrations that need to be calculated. The resultant algorithm is able to render inhomogeneous media including their shadowing and scattering effects in the real time. The algorithm may be adopted for a variety of light sources including point lights and environmental lights.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Applicant: MICROSOFT CORPORATION
    Inventors: Kun Zhou, Qiming Hou, Minmin Gong, John Michael Snyder, Baining Guo, Heung-Yeung Shum
  • Publication number: 20090006051
    Abstract: A real-time algorithm for rendering an inhomogeneous scattering medium such as fog is described. An input media animation is represented as a sequence of density fields, each of which is decomposed into a weighted sum of a set of radial basis functions (RBFs) such as Gaussians. The algorithm computes airlight and surface reflectance of the inhomogeneous scattering medium. Several approximations are taken which lead to analytical solutions of quantities such as an optical depth integrations and single scattering integrations, and a reduced number of integrations that need to be calculated. The resultant algorithm is able to render inhomogeneous media including their shadowing and scattering effects in real time. The algorithm may be adopted for a variety of light sources including point lights and environmental lights.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Applicant: MICROSOFT CORPORATION
    Inventors: Kun Zhou, Qiming Hou, Minmin Gong, John Michael Snyder, Baining Guo, Heung-Yeung Shum
  • Patent number: 7430490
    Abstract: A method and system for implementing capturing and rendering geometric details for mesostructure surfaces is described herein. A mesostructure distance function is defined as a function of a given reference point and a given viewing direction. A distance from a reference point to a mesostructure surface point along a viewing direction is measured using the mesostructure distance function. This distance is used to determine the visibility of mesostructure surface for rendering silhouettes. The lighting visibility of the mesostructure surface point may also be determined and used for determining whether the mesostructure surface point is in shadow. This determination may then be used for rendering shadow silhouettes.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: September 30, 2008
    Assignee: Microsoft Corporation
    Inventors: Xin Tong, Yanyun Chen, Baining Guo, Heung-Yeung Shum, Jiaping Wang, John Michael Snyder
  • Patent number: 7425954
    Abstract: Systems and methods are provided for optimizing a parametrization scheme in accordance with information about the surface signal. A surface parametrization is created to store a given surface signal into a texture image. The signal-specialized metric of the invention minimizes signal approximation error, i.e., the difference between the original surface signal and its reconstruction from the sampled texture. A signal-stretch parametrization metric is derived based on a Taylor expansion of signal error. For fast evaluation, the metric of the invention is pre-integrated over the surface as a metric tensor. The resulting parametrizations have increased texture resolution in surface regions with greater signal detail. Compared to traditional geometric parametrizations, the number of texture samples can often be reduced by a significant factor for a desired signal accuracy.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: September 16, 2008
    Assignee: Microsoft Corporation
    Inventors: Hugues Herve Hoppe, John Michael Snyder, Pedro Vieira Sander, Steven Jacob Gortler
  • Patent number: 7382369
    Abstract: The present invention is directed to a enhanced Precomputed Radiance Transfer (PRT) system employing an algorithm to compute a PRT signal over a surface mesh and subdividing facets of the mesh to increase the number of surface vertices such that the spatial variation of the transfer signal is resolved sufficiently everywhere on the surface. The method of this system ensures that radiance transfer shading produces colors of sufficient accuracy all over the surface. In certain embodiments, transfer is computed only at surface vertices, although this does result in a certain amount of acceptable aliasing and blurring of surface lighting detail in regions where the tessellation is too coarse. Furthermore, the method comprises a spatial and density sampling techniques that measures the transfer signal to a desirable appropriate resolution while minimizing aliasing. Once computed, the signal is represented as compactly as possible to minimize storage and runtime computation requirements.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: June 3, 2008
    Assignee: Microsoft Corporation
    Inventors: Peter-Pike Johannes Sloan, Yi-Ren Ng, John Michael Snyder
  • Patent number: 7286138
    Abstract: Systems and methods for discontinuity edge overdraw are described. In one aspect, a polygonal mesh is rendered to produce a computer-generated image. The image exhibits aliasing at its discontinuity edges. The discontinuity edges are sorted prior to overdrawing. The discontinuity edges are overdrawn as anti-aliased lines to reduce the aliasing.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: October 23, 2007
    Assignee: Microsoft Corporation
    Inventors: Hugues Hoppe, John Michael Snyder, Pedro Vieira Sander, Steven J. Gortler
  • Patent number: 7286127
    Abstract: Large mesh deformation using the volumetric graph Laplacian is described. In one aspect, information is received from a user, wherein the information indicates how an original mesh is to be deformed. The original mesh is then deformed based on the information and application of a volumetric differential operator to a volumetric graph generated from the original mesh.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: October 23, 2007
    Assignee: Microsoft Corporation
    Inventors: Kun Zhou, John Michael Snyder, Xinguo Liu, Baining Guo, Heung-Yeung Shum
  • Patent number: 7262769
    Abstract: Systems and methods are provided for optimizing the geometric stretch of a parametrization scheme. Given an arbitrary mesh, the systems and methods construct a progressive mesh (PM) such that all meshes in the PM sequence share a common texture parametrization. The systems and methods minimize geometric stretch, i.e., small texture distances mapped onto large surface distances, to balance sampling rates over all locations and directions on the surface. The systems and methods also minimize texture deviation, i.e., “slippage” error based on parametric correspondence, to obtain accurate textured mesh approximations. The technique(s) begin by partitioning the mesh into charts using planarity and compactness heuristics. Then, the technique(s) proceed by creating a stretch-minimizing parametrization within each chart, and by resizing the charts based on the resulting stretch. Then, the technique(s) simplify the mesh while respecting the chart boundaries.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: August 28, 2007
    Assignee: Microsoft Corporation
    Inventors: Hugues Herve Hoppe, John Michael Snyder, Pedro Vieira Sander, Steven Jacob Gortler
  • Patent number: 7262771
    Abstract: Computer graphics systems and methods for all-frequency relighting are described. In one described embodiment, all-frequency relighting is achieved by representing low frequencies of lighting with spherical harmonics and approximating the residual high-frequency energy with point lights. In another embodiment low-frequencies are rendered with precomputed radiance transfer (PRT) techniques while the higher-frequencies are rendered with on-the-fly techniques.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: August 28, 2007
    Assignee: Microsoft Corporation
    Inventors: John Michael Snyder, Peter-Pike Johannes Sloan, Yi-Ren Ng
  • Patent number: 7233963
    Abstract: Systems and methods are provided for diffusing clipping error in a computing system. When a data set contains values which are to be restricted to a range, and the data set includes one or more values which are beyond the range, the invention provides methodology that is an improvement over clipping extraneous values to the range or squeezing the values to the range. Advantageously, systems and methods are provided for distributing or diffusing error to neighboring samples of the data set, thereby spreading localized error, and minimizing the effects associated with remapping the data set to the restrictive range.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: June 19, 2007
    Assignee: Microsoft Corporation
    Inventor: John Michael Snyder
  • Patent number: 7230623
    Abstract: Systems and methods are provided for optimizing the geometric stretch of a parametrization scheme. Given an arbitrary mesh, the systems and methods construct a progressive mesh (PM) such that all meshes in the PM sequence share a common texture parametrization. The systems and methods minimize geometric stretch, i.e., small texture distances mapped onto large surface distances, to balance sampling rates over all locations and directions on the surface. The systems and methods also minimize texture deviation, i.e., “slippage” error based on parametric correspondence, to obtain accurate textured mesh approximations. The technique(s) begin by partitioning the mesh into charts using planarity and compactness heuristics. Then, the technique(s) proceed by creating a stretch-minimizing parametrization within each chart, and by resizing the charts based on the resulting stretch. Then, the technique(s) simplify the mesh while respecting the chart boundaries.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: June 12, 2007
    Assignee: Microsoft Corporation
    Inventors: Hugues Herve Hoppe, John Michael Snyder, Pedro Vieira Sander, Steven Jacob Gortier