Patents by Inventor John Norton Park

John Norton Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9076607
    Abstract: A system that includes micro-electromechanical system switching circuitry is provided. The system may include a first over-current protection circuitry connected in a parallel circuit with the micro-electromechanical system switching circuitry for suppressing a voltage level across contacts of the micro-electromechanical system switching circuitry during a first switching event, such as a turn-on event. The system may further include a second over-current protection circuitry connected in a parallel circuit with the micro-electromechanical system switching circuitry for suppressing a current flow through the contacts of the micro-electromechanical system switching circuitry during a second switching event, such as a turn-off event.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: July 7, 2015
    Assignee: General Electric Company
    Inventors: William James Premerlani, Kanakasabapathi Subramanian, Kathleen Ann O'Brien, John Norton Park, Owen Jannis Schelenz, Maja Harfman Todorovic
  • Patent number: 8659326
    Abstract: A switching apparatus, as may be configured to actuate stacked MEMS switches, may include a switching circuitry (34) including a MEMS switch (36) having a beam (16) made up of a first movable actuator (17) and a second movable actuator (19) electrically connected by a common connector (20) and arranged to selectively establish an electrical current path through the first and second movable actuators in response to a gate control signal applied to the gates of the switch to actuate the movable actuators. The apparatus may further include a gating circuitry (32) to generate the gate control signal applied to gates of the switch. The gating circuitry may include a driver channel (40) electrically coupled to the common connector and may be adapted to electrically float with respect to a varying beam voltage, and may be electrically referenced between the varying beam voltage and a local electrical ground of the gating circuitry.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glenn Claydon, Christopher Fred Keimel, John Norton Park, Bo Li
  • Patent number: 8358488
    Abstract: A current control device is disclosed. The current control device includes control circuitry integrally arranged with a current path and at least one micro electromechanical system (MEMS) switch disposed in the current path. The current control device further includes a hybrid arcless limiting technology (HALT) circuit connected in parallel with the at least one MEMS switch facilitating arcless opening of the at least one MEMS switch, and a pulse assisted turn on (PATO) circuit connected in parallel with the at least one MEMS switch facilitating arcless closing of the at least one MEMS switch.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: January 22, 2013
    Assignee: General Electric Company
    Inventors: William James Premerlani, Kanakasabapathi Subramanian, Christopher Fred Keimel, Kathleen Ann O'Brien, John Norton Park
  • Patent number: 8144445
    Abstract: A current control device is disclosed. The current control device includes control circuitry and a current path integrally arranged with the control circuitry. The current path includes a set of conduction interfaces and a micro electromechanical system (MEMS) switch disposed between the set of conduction interfaces. The set of conduction interfaces have geometry of a defined fuse terminal geometry and include a first interface disposed at one end of the current path and a second interface disposed at an opposite end of the current path. The MEMS switch is responsive to the control circuitry to facilitate the interruption of an electrical current passing through the current path.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: March 27, 2012
    Assignee: General Electric Company
    Inventors: Robert Joseph Caggiano, William James Premerlani, Marcelo Esteban Valdes, Kanakasabapathi Subramanian, Brent Charles Kumfer, Charles Stephan Pitzen, John Norton Park
  • Patent number: 8101898
    Abstract: An optically powered MEMS gate driver includes a photovoltaic converter configured to receive a light signal from a light source and output a DC supply voltage for a MEMS gate driver in response thereto. The MEMS gate driver further includes a DC to DC converter electrically coupled to the photovoltaic converter and configured to output a line level DC voltage in response to the DC supply voltage. An electrical circuit, also included as a portion of the MEMS gate driver is electrically coupled to both the photovoltaic converter and the DC to DC converter is configured to receive the supply voltage and the line level voltage and to output a line level drive signal in response thereto. The optically powered MEMS gate driver is self-contained within a common EMI enclosure thus providing isolation between the gate driver and command signal electronics.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: January 24, 2012
    Assignee: General Electric Company
    Inventors: Glen Peter Koste, Kathleen Ann O'Brien, Kanakasabapathi Subramanian, John Norton Park
  • Patent number: 8054589
    Abstract: An apparatus, such as a switch module, is provided. The apparatus can include an electromechanical switch structure configured to move between an open configuration and a fully-closed configuration (associated with a minimum characteristic resistance) over a characteristic time. A commutation circuit can be connected in parallel with the electromechanical switch structure, and can include a balanced diode bridge configured to suppress arc formation between contacts of the electromechanical switch structure and a pulse circuit including a pulse capacitor configured to form a pulse signal (in connection with a switching event of the electromechanical switch structure) for causing flow of a pulse current through the balanced diode bridge. The electromechanical switch structure and the balanced diode bridge can be disposed such that a total inductance associated with the commutation circuit is less than or equal to a product of the characteristic time and the minimum characteristic resistance.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: Arun Virupaksha Gowda, Kathleen Ann O'Brien, John Norton Park, William James Premerlani, Owen Jannis Samuel Schelenz, Kanakasabapathi Subramanian
  • Patent number: 8050000
    Abstract: A system is presented. The system includes a micro-electromechanical system switch. Further, the system includes a balanced diode bridge configured to suppress arc formation between contacts of the micro-electromechanical system switch. A pulse circuit is coupled to the balanced diode bridge to form a pulse signal in response to a fault condition. An energy-absorbing circuitry is coupled in a parallel circuit with the pulse circuit and is adapted to absorb electrical energy resulting from the fault condition without affecting a pulse signal formation by the pulse circuit.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: November 1, 2011
    Assignee: General Electric Company
    Inventors: Joshua Isaac Wright, Kanakasabqapathi Subramanian, William James Premerlani, John Norton Park
  • Publication number: 20110140546
    Abstract: An apparatus, such as a switch module, is provided. The apparatus can include an electromechanical switch structure configured to move between an open configuration and a fully-closed configuration (associated with a minimum characteristic resistance) over a characteristic time. A commutation circuit can be connected in parallel with the electromechanical switch structure, and can include a balanced diode bridge configured to suppress arc formation between contacts of the electromechanical switch structure and a pulse circuit including a pulse capacitor configured to form a pulse signal (in connection with a switching event of the electromechanical switch structure) for causing flow of a pulse current through the balanced diode bridge. The electromechanical switch structure and the balanced diode bridge can be disposed such that a total inductance associated with the commutation circuit is less than or equal to a product of the characteristic time and the minimum characteristic resistance.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 16, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Arun Virupaksha Gowda, Kathleen Ann O'Brien, John Norton Park, William James Premerlani, Owen Jannis Samuel Schelenz, Kanakasabapathi Subramanian
  • Publication number: 20110096444
    Abstract: A system is presented. The system includes a micro-electromechanical system switch. Further, the system includes a balanced diode bridge configured to suppress arc formation between contacts of the micro-electromechanical system switch. A pulse circuit is coupled to the balanced diode bridge to form a pulse signal in response to a fault condition. An energy-absorbing circuitry is coupled in a parallel circuit with the pulse circuit and is adapted to absorb electrical energy resulting from the fault condition without affecting a pulse signal formation by the pulse circuit.
    Type: Application
    Filed: December 14, 2010
    Publication date: April 28, 2011
    Applicant: General Electric Company
    Inventors: Joshua Isaac Wright, Kanakasabapathi Subramanian, William James Premerlani, John Norton Park
  • Patent number: 7903382
    Abstract: The present invention comprises a micro-electromechanical system (MEMS) micro-switch array based current limiting enabled circuit interrupting apparatus. The apparatus comprising an over-current protective component, wherein the over-current protective component comprises a switching circuit, wherein the switching circuit comprises a plurality of micro-electromechanical system switching devices. The apparatus also comprises a circuit breaker or switching component, wherein the circuit breaker or switching component is in operable communication with the over-current protective component.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: March 8, 2011
    Assignee: General Electric Company
    Inventors: William James Premerlani, Kanakasabapathi Subramanian, Kathleen Ann O'Brien, John Norton Park, Brent Charles Kumfer, Parag Thakre
  • Patent number: 7876538
    Abstract: A system is presented. The system includes a micro-electromechanical system switch. Further, the system includes a balanced diode bridge configured to suppress arc formation between contacts of the micro-electromechanical system switch. A pulse circuit is coupled to the balanced diode bridge to form a pulse signal in response to a fault condition. An energy-absorbing circuitry is coupled in a parallel circuit with the pulse circuit and is adapted to absorb electrical energy resulting from the fault condition without affecting a pulse signal formation by the pulse circuit.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: January 25, 2011
    Assignee: General Electric Company
    Inventors: Joshua Isaac Wright, Kanakasabapathi Subramanian, William James Premerlani, John Norton Park
  • Publication number: 20100237227
    Abstract: An optically powered MEMS gate driver includes a photovoltaic converter configured to receive a light signal from a light source and output a DC supply voltage for a MEMS gate driver in response thereto. The MEMS gate driver further includes a DC to DC converter electrically coupled to the photovoltaic converter and configured to output a line level DC voltage in response to the DC supply voltage. An electrical circuit, also included as a portion of the MEMS gate driver is electrically coupled to both the photovoltaic converter and the DC to DC converter is configured to receive the supply voltage and the line level voltage and to output a line level drive signal in response thereto. The optically powered MEMS gate driver is self-contained within a common EMI enclosure thus providing isolation between the gate driver and command signal electronics.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 23, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Glen Peter Koste, Kathleen Ann O'Brien, Kanakasabapathi Subramanian, John Norton Park
  • Patent number: 7643256
    Abstract: A switching system is provided. The switching system includes electromechanical switching circuitry, such as a micro-electromechanical system switching circuitry. The system may further include solid state switching circuitry coupled in a parallel circuit with the electromechanical switching circuitry, and a controller coupled to the electromechanical switching circuitry and the solid state switching circuitry. The controller may be configured to perform selective switching of a load current between the electromechanical switching circuitry and the solid state switching circuitry in response to a load current condition appropriate to an operational capability of a respective one of the switching circuitries.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: January 5, 2010
    Assignee: General Electric Company
    Inventors: Joshua Isaac Wright, Kanakasabapathi Subramanian, William James Premerlani, John Norton Park, Edward Keith Howell
  • Patent number: 7542250
    Abstract: A motor starter is provided. The motor starter includes micro-electromechanical system switching circuitry. The system may further include solid state switching circuitry coupled in a parallel circuit with the electromechanical switching circuitry, and a controller coupled to the electromechanical switching circuitry and the solid state switching circuitry. The controller may be configured to perform selective switching of a load current from a motor connected to the motor starter. The switching may be performed between the electromechanical switching circuitry and the solid state switching circuitry in response to a load current condition appropriate to an operational capability of a respective one of the switching circuitries.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: June 2, 2009
    Assignee: General Electric Company
    Inventors: William James Premerlani, Fengfeng Tao, Joshua Isaac Wright, Kanakasabapathi Subramanian, John Norton Park, Robert Joseph Caggiano, David James Lesslie, Brent Charles Kumfer, Charles Stephan Pitzen, Kathleen Ann O'Brien, Edward Keith Howell
  • Patent number: 7473859
    Abstract: A gating voltage control system and method are provided for electrostatically actuating a micro-electromechanical systems (MEMS) device, e.g., a MEMS switch. The device may comprise an electrostatically responsive actuator movable through a gap for actuating the device to a respective actuating condition corresponding to one of a first actuating condition (e.g., a closed switching condition) and a second actuating condition (e.g., an open switching condition). The gating voltage control system may comprise a drive circuit electrically coupled to a gate terminal of the device to apply a gating voltage. The gating voltage control system may further comprise a controller electrically coupled to the drive circuit to control the gating voltage applied to the gating terminal in accordance with a gating voltage control sequence.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: January 6, 2009
    Assignee: General Electric Company
    Inventors: Joshua Isaac Wright, Kanakasabapathi Subramanian, William James Premerlani, John Norton Park, Christopher Keimel, Long Que, Kuna Venkat Satya Rama Kishore, Abhijeet Dinkar Sathe, Xuefeng Wang, Edward Keith Howell
  • Publication number: 20080315980
    Abstract: The present invention comprises a micro-electromechanical system (MEMS) micro-switch array based current limiting enabled circuit interrupting apparatus. The apparatus comprising an over-current protective component, wherein the over-current protective component comprises a switching circuit, wherein the switching circuit comprises a plurality of micro-electromechanical system switching devices. The apparatus also comprises a circuit breaker or switching component, wherein the circuit breaker or switching component is in operable communication with the over-current protective component.
    Type: Application
    Filed: June 19, 2007
    Publication date: December 25, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William James Premerlani, Kanakasabapathi Subramanian, Kathleen Ann O'Brien, John Norton Park, Brent Charles Kumfer, Parag Thakre
  • Publication number: 20080309438
    Abstract: A current control device is disclosed. The current control device includes control circuitry and a current path integrally arranged with the control circuitry. The current path includes a set of conduction interfaces and a micro electromechanical system (MEMS) switch disposed between the set of conduction interfaces. The set of conduction interfaces have geometry of a defined fuse terminal geometry and include a first interface disposed at one end of the current path and a second interface disposed at an opposite end of the current path. The MEMS switch is responsive to the control circuitry to facilitate the interruption of an electrical current passing through the current path.
    Type: Application
    Filed: June 12, 2007
    Publication date: December 18, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Robert Joseph Caggiano, William James Premerlani, Marcelo Esteban Valdes, Kanakasabapathi Subramanian, Brent Charles Kumfer, Charles Stephan Pitzen, John Norton Park
  • Publication number: 20080310058
    Abstract: The present invention comprises MEMS enabled apparatus for the detection of arc-faults and the elimination of arc-flash conditions. The apparatus comprises an arc-flash detection component and a current limiting component. The current limiting component comprises a logic circuit in communication with the user interface, an MEMS protection circuit in communication with the logic circuit, and a switching circuit in communication with the MEMS protection circuit. The switching circuit comprises a plurality of micro-electromechanical system switching devices and a voltage limiting device, wherein the voltage limiting device is configured to prevent an over voltage event during a current limiting operation.
    Type: Application
    Filed: June 15, 2007
    Publication date: December 18, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William James Premerlani, Joshua Isaac Wright, Kanakasabapathi Subramanian, John Norton Park
  • Publication number: 20080308394
    Abstract: A current control device is disclosed. The current control device includes control circuitry integrally arranged with a current path and at least one micro electromechanical system (MEMS) switch disposed in the current path. The current control device further includes a hybrid arcless limiting technology (HALT) circuit connected in parallel with the at least one MEMS switch facilitating arcless opening of the at least one MEMS switch, and a pulse assisted turn on (PATO) circuit connected in parallel with the at least one MEMS switch facilitating arcless closing of the at least one MEMS switch.
    Type: Application
    Filed: June 15, 2007
    Publication date: December 18, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William James Premerlani, Kanakasabapathi Subramanian, Christopher Fred Keimel, Kathleen Ann O'Brien, John Norton Park
  • Publication number: 20080211347
    Abstract: A circuit for controlling operation of a load. In one example, a MEMS switch is positioned in the circuit to place the load in one of a conducting state or a nonconducting state. A piezoelectric transformer provides a relatively high voltage output signal or a relatively low voltage output signal to control movement of the switch between a closed position, placing the load in the conducting state, and an open position. The high voltage output signal includes a frequency component in the resonant frequency range of the transformer. Control circuitry provides an input voltage signal to the piezoelectric transformer to provide the high voltage output signal or the low voltage output signal at the output terminals of the piezoelectric transformer.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 4, 2008
    Inventors: Joshua Isaac Wright, Kanakasabapathi Subramanian, Nicole Christine Reeves, John Norton Park