Patents by Inventor John P. Petro

John P. Petro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8471425
    Abstract: Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies and/or inner rotor assemblies with a corresponding stator assembly. In some embodiments a rotor assembly can include magnetically permeable structures having confronting surfaces oriented at an angle to the axis of rotation. A group of magnetic structures can be interleaved with the magnetically permeable structures. The magnetically permeable structures can also include non-confronting surfaces adjacent to which boost magnets are disposed to enhance flux in a flux path passing through magnetic structures that are interleaved with magnetically permeable structures. Further, the rotor assemblies can include a flux conductor shield disposed adjacent to the boost magnets, the flux conductor shield configured to provide return flux paths.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: June 25, 2013
    Assignee: NovaTorque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Patent number: 8330316
    Abstract: Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies. In some embodiments, a stator assembly including field pole members arranged about an axis of rotation and including pole faces at the ends of the field pole members, subsets of the pole faces being disposed within a boundaries of conically-shaped spaces having apexes disposed on the axis of rotation. The rotor assemblies include interior regions in which the subsets of the pole faces are disposed, the interior regions having surfaces external to the boundaries of the conically-shaped spaces. The rotor assemblies also include subsets of magnets interleaved circumferentially with the subsets of magnetically permeable structures and boost magnets disposed adjacent the subsets of magnetically permeable structures.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: December 11, 2012
    Assignee: NovaTorque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Publication number: 20120228976
    Abstract: Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies. In some embodiments, a stator assembly including field pole members arranged about an axis of rotation and including pole faces at the ends of the field pole members, subsets of the pole faces being disposed within a boundaries of conically-shaped spaces having apexes disposed on the axis of rotation. The rotor assemblies include interior regions in which the subsets of the pole faces are disposed, the interior regions having surfaces external to the boundaries of the conically-shaped spaces. The rotor assemblies also include subsets of magnets interleaved circumferentially with the subsets of magnetically permeable structures and boost magnets disposed adjacent the subsets of magnetically permeable structures.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: Nova Torque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Publication number: 20120228979
    Abstract: Embodiments of various rotor assemblies can include an arrangement of magnetically permeable structures including confronting surfaces oriented at an angle to the centerline, and different subsets of non-confronting surfaces. Different magnets can be disposed adjacent to the different subsets of non-confronting subsets. For example, one type of magnet lies is a flux path or a flux path portion passing through one subset of non-confronting surfaces, and another type of magnet is external to the flux path adjacent to another subset of non-confronting surfaces and is configured to boost the flux associated with the flux path (or a portion thereof). In some embodiments, the magnetic region can include a portion of the internal permanent magnet. One example of a rotor assembly is an outer rotor assembly.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: NovaTorque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Publication number: 20120228978
    Abstract: Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies and/or inner rotor assemblies with a corresponding stator assembly. In some embodiments a rotor assembly can include magnetically permeable structures having confronting surfaces oriented at an angle to the axis of rotation. A group of magnetic structures can be interleaved with the magnetically permeable structures. The magnetically permeable structures can also include non-confronting surfaces adjacent to which boost magnets are disposed to enhance flux in a flux path passing through magnetic structures that are interleaved with magnetically permeable structures. Further, the rotor assemblies can include a flux conductor shield disposed adjacent to the boost magnets, the flux conductor shield configured to provide return flux paths.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: Nova Torque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Publication number: 20120228977
    Abstract: Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies and/or inner rotor assemblies. In some embodiments, a rotor-stator structure includes a rotor structure in which rotor assemblies are arranged on an axis of rotation. A rotor assembly can include an arrangement of magnetic regions each having a portion of a surface that is oriented substantially at an angle to the axis and disposed externally to, for example, a portion of a conically-shaped space centered on the axis of rotation. The rotor-stator structure also can include pole members (e.g., field pole members) having pole faces. A subset of the pole faces can be positioned to confront the arrangement of the magnetic regions to establish air gaps, with the subset of the pole faces being disposed internally to the conically-shaped space.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: Nova Torque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Patent number: 7004446
    Abstract: A dual-magnet valve unit having a first master magnet ring assembly with an outer casing slidably contained within an outer housing that forms a chamber with the casing of the master magnet ring assembly and a second, slave magnet disk assembly with an outer tube and a poppet member in the form of a cone and displaceable within the inner transport fluid conduit, the inner transport fluid conduit having a valve seat contactable by the cone of the poppet member to block fluid flow through the fluid conduit in one position of the slave magnet disk assembly and displaceable from the cone to pass fluid flow through the fluid conduit in an opposite position of the slave magnet disk assembly, the master magnet ring assembly being displaced by selective supply of a motive fluid to the chamber to displace the master magnet ring assembly from one position to another, which automatically displaces the slave magnet ring assembly.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: February 28, 2006
    Inventors: John P. Petro, Donald Burch, Jeremy F. Mayer
  • Publication number: 20040051065
    Abstract: A dual-magnet valve unit having a first master magnet ring assembly with an outer casing slidably contained within an outer housing that forms a chamber with the casing of the master magnet ring assembly and a second, slave magnet disk assembly with an outer tube and a poppet member in the form of a cone and displaceable within the inner transport fluid conduit, the inner transport fluid conduit having a valve seat contactable by the cone of the poppet member to block fluid flow through the fluid conduit in one position of the slave magnet disk assembly and displaceable from the cone to pass fluid flow through the fluid conduit in an opposite position of the slave magnet disk assembly, the master magnet ring assembly being displaced by selective supply of a motive fluid to the chamber to displace the master magnet ring assembly from one position to another, which automatically displaces the slave magnet ring assembly.
    Type: Application
    Filed: September 16, 2002
    Publication date: March 18, 2004
    Inventors: John P. Petro, Donald Burch, Jeremy F. Mayer
  • Patent number: 5752811
    Abstract: A linear actuator and pump unit for precision displacement of fluids in which a positive displacement, piston pump is coupled to an actuator mechanism having a carriage on a guide that is displaced by a rotary drive connected to a take-up drum on an anchor structure that has a pulley line anchored to the anchor structure looped around a first idler pulley on the carriage, looped around an idler pulley on the anchor structure, looped around a second anchor structure on the carriage, and connected to the take-up drum, the positioning of the carriage being detected by a sensor and the rotary drive that controls the precision operation of the piston pump.
    Type: Grant
    Filed: November 15, 1996
    Date of Patent: May 19, 1998
    Inventor: John P. Petro