Patents by Inventor John P. Rodgers

John P. Rodgers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120318508
    Abstract: A perforation tool assembly is provided. The perforation tool assembly comprises an energy train, a first perforation gun, and a second perforation gun. The energy train comprises a moderator to reduce the speed of propagation of a detonation in a direction parallel to the axis of the perforation tool assembly. The first perforation gun comprises a plurality of explosive charges coupled to a first portion of the energy train. The second perforation gun comprises a plurality of explosive charges coupled to a second portion of the energy train, wherein the second portion of the energy train is coupled to the first portion of the energy train.
    Type: Application
    Filed: August 25, 2012
    Publication date: December 20, 2012
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Timothy S. Glenn, John P. Rodgers, Jeff A. Nelson, John D. Burleson, Marco Serra, John H. Hales
  • Publication number: 20120273201
    Abstract: A perforation tool assembly is provided. The perforation tool assembly comprises an energy train, a first perforation gun, and a second perforation gun. The energy train comprises a moderator to reduce the speed of propagation of a detonation in a direction parallel to the axis of the perforation tool assembly. The first perforation gun comprises a plurality of explosive charges coupled to a first portion of the energy train. The second perforation gun comprises a plurality of explosive charges coupled to a second portion of the energy train, wherein the second portion of the energy train is coupled to the first portion of the energy train.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Timothy S. Glenn, John P. Rodgers, Jeff A. Nelson, John D. Burleson, Marco Serra, John H. Hales
  • Publication number: 20120255722
    Abstract: A shock de-coupler for use with a perforating string can include perforating string connectors at opposite ends of the de-coupler, a longitudinal axis extending between the connectors, and a biasing device which resists displacement of one connector relative to the other connector in both opposite directions along the longitudinal axis, whereby the first connector is biased toward a predetermined position relative to the second connector. A perforating string can include a shock de-coupler interconnected longitudinally between components of the perforating string, with the shock de-coupler variably resisting displacement of one component away from a predetermined position relative to the other component in each longitudinal direction, and in which a compliance of the shock de-coupler substantially decreases in response to displacement of the first component a predetermined distance away from the predetermined position relative to the second component.
    Type: Application
    Filed: June 13, 2012
    Publication date: October 11, 2012
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: John P. RODGERS, John D. BURLESON, Marco SERRA, Timothy S. GLENN, Edwin A. EATON
  • Patent number: 8256516
    Abstract: A system and a method provide a downhole mechanical energy absorber that protects downhole tools from impact loads and shock loads that occur during run-in contacts, tool drops, perforating blasts, and other impact events. A continuous localized inelastic deformation of a tube is a primary energy absorber in a load limiting design of the downhole mechanical energy absorber.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: September 4, 2012
    Assignee: Starboard Innovations, LLC
    Inventor: John P. Rodgers
  • Publication number: 20120152616
    Abstract: A bending shock de-coupler for use with a perforating string can include perforating string connectors at opposite ends of the de-coupler. A bending compliance of the de-coupler may substantially increase between the connectors. A well system can include a perforating string including at least one perforating gun and multiple bending shock de-couplers, each of the de-couplers having a bending compliance, and at least two of the bending compliances being different from each other. A perforating string can include a bending shock de-coupler interconnected longitudinally between two components of the perforating string. A bending compliance of the bending shock de-coupler may substantially decrease in response to angular displacement of one of the components a predetermined amount relative to the other component.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: John P. RODGERS, Timothy S. GLENN, Marco SERRA, Edwin A. EATON, John D. BURLESON
  • Publication number: 20120152614
    Abstract: A method of mitigating perforating effects produced by well perforating can include causing a shock model to predict perforating effects for a proposed perforating string, optimizing a compliance curve of at least one proposed coupler, thereby mitigating the perforating effects for the proposed perforating string, and providing at least one actual coupler having substantially the same compliance curve as the proposed coupler. A well system can comprise a perforating string including at least one perforating gun and multiple couplers, each of the couplers having a compliance curve, and at least two of the compliance curves being different from each other. A method of mitigating perforating effects produced by well perforating can include interconnecting multiple couplers spaced apart in a perforating string, each of the couplers having a compliance curve, and selecting the compliance curves based on predictions by a shock model of shock generated by the perforating string.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: John P. RODGERS, Marco SERRA, Timothy S. GLENN, John D. BURLESON
  • Publication number: 20120152615
    Abstract: A shock de-coupler for use with a perforating string can include perforating string connectors at opposite ends of the de-coupler, a longitudinal axis extending between the connectors, and a biasing device which resists displacement of one connector relative to the other connector in both opposite directions along the longitudinal axis, whereby the first connector is biased toward a predetermined position relative to the second connector. A perforating string can include a shock de-coupler interconnected longitudinally between components of the perforating string, with the shock de-coupler variably resisting displacement of one component away from a predetermined position relative to the other component in each longitudinal direction, and in which a compliance of the shock de-coupler substantially decreases in response to displacement of the first component a predetermined distance away from the predetermined position relative to the second component.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: John P. RODGERS, John D. BURLESON, Marco SERRA, Timothy S. GLENN, Edwin A. EATON
  • Publication number: 20100300750
    Abstract: A perforating apparatus (50) includes a carrier gun body (52) having a plurality of radially reduced sections (54). The radially reduced sections (54) have a nanocomposite outer layer (72). A charge holder (62) is positioned within the carrier gun body (52). A plurality of shaped charges (56) are supported by the charge holder (62). The shaped charges (56) each have an initiation end and a discharge end. The discharge ends of the shaped charges (56) are disposed proximate the radially reduced sections (54) of the carrier gun body (52) such that the jets formed upon detonation of the shaped charges (56) travel through the radially reduced sections (54). The nanocomposite outer layers (72) of the radially reduced sections (54) enable enhanced performance of the perforating apparatus (50) in high pressure and high temperature wellbores.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 2, 2010
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: John H. Hales, John D. Burleson, John P. Rodgers
  • Patent number: 7781939
    Abstract: Thermal expansion matching for an acoustic telemetry system. An acoustic telemetry system includes at least one electromagnetically active element and a biasing device which reduces a compressive force in the element in response to increased temperature. A method of utilizing an acoustic telemetry system in an elevated temperature environment includes the steps of: applying a compressive force to at least one electromagnetically active element of the telemetry system; and reducing the compressive force as the temperature of the environment increases.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: August 24, 2010
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael L. Fripp, John P. Rodgers, Adam D. Wright
  • Publication number: 20100132939
    Abstract: A system and a method are disclosed for providing a downhole mechanical energy absorber that protects downhole tools from impact loads and shock loads that occur during run-in contacts, tool drops, perforating blasts, and other impact events. A continuous localized inelastic deformation of a tube is a primary energy absorber in a load limiting design of the downhole mechanical energy absorber.
    Type: Application
    Filed: May 20, 2009
    Publication date: June 3, 2010
    Applicant: Starboard Innovations, LLC
    Inventor: John P. Rodgers
  • Publication number: 20090245024
    Abstract: Thermal expansion matching for an acoustic telemetry system. An acoustic telemetry system includes at least one electromagnetically active element and a biasing device which reduces a compressive force in the element in response to increased temperature. A method of utilizing an acoustic telemetry system in an elevated temperature environment includes the steps of: applying a compressive force to at least one electromagnetically active element of the telemetry system; and reducing the compressive force as the temperature of the environment increases.
    Type: Application
    Filed: May 27, 2009
    Publication date: October 1, 2009
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Michael L. FRIPP, John P. RODGERS, Adam D. WRIGHT
  • Patent number: 7595737
    Abstract: A shear coupled acoustic telemetry system. An acoustic telemetry system includes a tubular string having a pressure-bearing wall and an acoustic telemetry assembly positioned external to the wall and operative to communicate an acoustic signal between the assembly and the wall. The assembly may be shear coupled to the wall. The assembly may include a pressure-bearing housing positioned external to the wall.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: September 29, 2009
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Kevin D. Fink, Michael L. Fripp, Adam D. Wright, John P. Rodgers
  • Patent number: 7557492
    Abstract: Thermal expansion matching for an acoustic telemetry system. An acoustic telemetry system includes at least one electromagnetically active element and a biasing device which reduces a compressive force in the element in response to increased temperature. A method of utilizing an acoustic telemetry system in an elevated temperature environment includes the steps of: applying a compressive force to at least one electromagnetically active element of the telemetry system; and reducing the compressive force as the temperature of the environment increases.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: July 7, 2009
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael L. Fripp, John P. Rodgers, Adam D. Wright
  • Publication number: 20080031091
    Abstract: Thermal expansion matching for an acoustic telemetry system. An acoustic telemetry system includes at least one electromagnetically active element and a biasing device which reduces a compressive force in the element in response to increased temperature. A method of utilizing an acoustic telemetry system in an elevated temperature environment includes the steps of: applying a compressive force to at least one electromagnetically active element of the telemetry system; and reducing the compressive force as the temperature of the environment increases.
    Type: Application
    Filed: July 24, 2006
    Publication date: February 7, 2008
    Inventors: Michael L. Fripp, John P. Rodgers, Adam D. Wright
  • Publication number: 20080030367
    Abstract: A shear coupled acoustic telemetry system. An acoustic telemetry system includes a tubular string having a pressure-bearing wall and an acoustic telemetry assembly positioned external to the wall and operative to communicate an acoustic signal between the assembly and the wall. The assembly may be shear coupled to the wall. The assembly may include a pressure-bearing housing positioned external to the wall.
    Type: Application
    Filed: July 24, 2006
    Publication date: February 7, 2008
    Inventors: Kevin D. Fink, Michael L. Fripp, Adam D. Wright, John P. Rodgers
  • Patent number: 7325605
    Abstract: Thin flexible piezoelectric transducers are bonded to or imbedded into oilfield tubular members or structural members. The transducers may be used to telemeter data as acoustic waves through the members. By proper spacing of transducers and phasing of driving signals, the transmitted signals can be directionally enhanced or encoded to improve transmission efficiency. The transducers may be used for health monitoring of the tubular or structural members to detect cracks, delaminations, or other defects. The flexible transducers are very thin so that overall dimensions of tubular or structural members are essentially unchanged by incorporation of the transducers.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: February 5, 2008
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael L. Fripp, John P. Rodgers, Roger L. Schultz
  • Patent number: 7234519
    Abstract: Thin flexible piezoelectric transducers are bonded to or imbedded into oilfield tubular members or structural members. The transducers may be used to telemeter data as acoustic waves through the members. By proper spacing of transducers and phasing of driving signals, the transmitted signals can be directionally enhanced or encoded to improve transmission efficiency. The transducers may be used for health monitoring of the tubular or structural members to detect cracks, delaminations, or other defects. The flexible transducers are very thin so that overall dimensions of tubular or structural members are essentially unchanged by incorporation of the transducers.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: June 26, 2007
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael L. Fripp, Roger L. Schultz, John P. Rodgers
  • Patent number: 7205707
    Abstract: Laser beam machining is applied to form arbitrarily shaped electroactive ceramics for transducers (e.g., electromechanical sensors and actuators). One particularly preferred embodiment of the invention comprises machining parallel grooves in a ceramic plate to improve flexibility. The grooves provide strain relief in bending by relieving Poisson strains transverse to the direction of bending. This embodiment offers the further benefit that planar anisotropy or directionality is introduced in the transducer. The machining process of the invention further enables the production of more complex geometries than those currently known in the art. Because of the flexibility of the machining process, virtually any desired transducer shape may be produced.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: April 17, 2007
    Assignee: Mide Technology Corporation
    Inventors: Brett P. Masters, John P. Rodgers, Marthinus C. van Schoor
  • Patent number: 6979937
    Abstract: Laser beam machining is applied to form arbitrarily shaped electroactive ceramics for transducers (e.g., electromechanical sensors and actuators). One particularly preferred embodiment of the invention comprises machining parallel grooves in a ceramic plate to improve flexibility. The grooves provide strain relief in bending by relieving Poisson strains transverse to the direction of bending. This embodiment offers the further benefit that planar anisotropy or directionality is introduced in the transducer. The machining process of the invention further enables the production of more complex geometries than those currently known in the art. Because of the flexibility of the machining process, virtually any desired transducer shape may be produced.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: December 27, 2005
    Assignee: Mide Technology Corporation
    Inventors: Brett P. Masters, John P. Rodgers, Marthinus C. van Schoor
  • Publication number: 20040200613
    Abstract: Thin flexible piezoelectric transducers are bonded to or imbedded into oilfield tubular members or structural members. The transducers may be used to telemeter data as acoustic waves through the members. By proper spacing of transducers and phasing of driving signals, the transmitted signals can be directionally enhanced or encoded to improve transmission efficiency. The transducers may be used for health monitoring of the tubular or structural members to detect cracks, delaminations, or other defects. The flexible transducers are very thin so that overall dimensions of tubular or structural members are essentially unchanged by incorporation of the transducers.
    Type: Application
    Filed: April 8, 2003
    Publication date: October 14, 2004
    Inventors: Michael L. Fripp, Roger L. Schultz, John P. Rodgers