Patents by Inventor John R. Dangler

John R. Dangler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11122682
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which utilize liquid crystal polymer layers in solid form. The tamper-respondent assemblies include a circuit board, and an enclosure assembly mounted to the circuit board to enclose one or more electronic components coupled to the circuit board within a secure volume. The assembly includes a tamper-respondent sensor that is a three-dimensional multilayer sensor structure, which includes multiple liquid crystal polymer layers, and at least one tamper-detect circuit. The at least one tamper-detect circuit includes one or more circuit lines in a tamper-detect pattern disposed on at least one liquid crystal polymer layer of the multiple liquid crystal polymer layers. Further, a monitor circuit is provided disposed within the secure volume to monitor the at least one tamper-detect circuit of the tamper-respondent sensor for a tamper event.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: September 14, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, John R. Dangler, Mark K. Hoffmeyer, William L. Brodsky, William Santiago-Fernandez, David C. Long, Silvio Dragone, Michael J. Fisher, Arthur J. Higby
  • Publication number: 20210273355
    Abstract: A press-fit insertion method is provided. The press-fit insertion method includes loading press-fit pins into a connector, heating a printed circuit board (PCB) defining plated through holes (PTHs) into which the press-fit pins are insertable and pressing the connector onto the PCB to insert the press-fit pins into the PTHs with the PCB remaining heated.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 2, 2021
    Inventors: John R. Dangler, David J. Braun, Theron Lee Lewis
  • Patent number: 11100514
    Abstract: Systems, methods, and cards utilized for an authentication protection layer for payment card transactions are provided. Aspects include receiving, by a transaction processing terminal, the card for the potential transaction. Obtaining card holder information for the card and transmitting a radio frequency (RF) signal and receiving RFID data from an RFID tag associated with the card. Comparing, by a processor, the card holder information to the RFID data to determine whether to authorize the potential card transaction and authorizing the potential card transaction based at least on a determination that the RFID data corresponds to the card holder information.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: August 24, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John R. Dangler, Layne Berge, Jason J. Bjorgaard, Thomas Liang, Manuel Orozco, Matthew Doyle
  • Patent number: 11083082
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure-to-circuit board protection. The tamper-respondent assemblies include a circuit board, and an enclosure mounted to the circuit board along an enclosure-to-board interface. The enclosure facilitates enclosing at least one electronic component coupled to the circuit board within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and includes one or more tamper-detect circuits including at least one conductive trace disposed, at least in part, within the enclosure-to-board interface. The conductive trace(s) includes stress rise regions to facilitate tamper-detection at the enclosure-to-board interface. An adhesive is provided to secure the enclosure to the circuit board. The adhesive contacts, at least in part, the conductive trace(s) of the tamper-detect circuit(s) at the enclosure-to-board interface, including at the stress rise regions of the conductive trace(s).
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: August 3, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kathleen Ann Fadden, James A. Busby, David C. Long, John R. Dangler, Alexandra Echegaray, Michael J. Fisher, William Santiago-Fernandez
  • Patent number: 11064616
    Abstract: A method and structure are provided for implementing stub-less printed circuit board (PCB) vias and custom interconnect through laser-excitation conductive track structures. Stub-less printed PCB vias are formed which terminate at desired signal layers by controlled laser excitation without stubs or the need to back-drill to remove such stubs.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: July 13, 2021
    Assignee: International Business Machines Corporation
    Inventors: Layne A. Berge, John R. Dangler, Matthew S. Doyle, Joseph Kuczynski, Thomas W. Liang, Manuel Orozco
  • Publication number: 20210210448
    Abstract: A solder ball assembly can include a first spring element having a first shape and formed from a first elastic electrically conductive material. The solder ball assembly can also include a second spring element having a second shape and formed from a second elastic electrically conductive material. The second spring element is mechanically attached to the first spring element to form a spring assembly. The solder ball can be configured to enclose the spring assembly.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 8, 2021
    Inventors: Jason J. Bjorgaard, Layne A. Berge, John R. Dangler, Matthew Doyle, Thomas W. Liang, Kyle Schoneck, Matthew A. Walther
  • Patent number: 11054442
    Abstract: Electrical current flow in a ball grid array (BGA) package can be measured by an apparatus including an integrated circuit (IC) electrically connected to the BGA package. Solder balls connect the BGA package to a printed circuit board (PCB). A current sense mesh can be placed between adjacent solder balls and is attached to the upper surface of the PCB. The solder balls are electrically connected to supply current from the PCB through the BGA package to the IC. A MUX/Sequencer can sequentially connect wires of the current sense mesh to an amplifier. The amplifier can amplify a voltage induced on the current sense mesh by current flow into the BGA package. A sensing analog-to-digital converter (ADC) is electrically connected to convert a voltage at the output of the amplifier into digital output signals.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: July 6, 2021
    Assignee: International Business Machines Corporation
    Inventors: Layne A. Berge, Matthew Doyle, Kyle Schoneck, Thomas W. Liang, Matthew A. Walther, Jason J. Bjorgaard, John R. Dangler
  • Publication number: 20210165052
    Abstract: An electronic system can include an electronic module and a trace circuit that provides a perimeter that encloses the electronic module. A sensing circuit within the electronic system can be configured to detect a discontinuity in the perimeter. In response to detecting the discontinuity in the perimeter, the sensing circuit can initiate, from a response device, a response signal.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 3, 2021
    Inventors: Matthew Doyle, James Busby, Edward N. Cohen, John R. Dangler, Michael Fisher, Arthur Higby, David Clifford Long
  • Publication number: 20210165051
    Abstract: An electronic system can be used to monitor temperature. The electronic system can include a characterized dielectric located adjacent to a plurality of heat-producing electronic devices. The electronic system can also include a leakage measurement circuit that is electrically connected to the characterized dielectric. The leakage measurement circuit can be configured to measure current leakage through the characterized dielectric. The leakage measurement circuit can also be configured to convert a leakage current measurement into a corresponding output voltage. A response device, electrically connected to the leakage measurement circuit can be configured to, in response to the output voltage exceeding a voltage threshold corresponding to a known temperature, initiate a response action.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 3, 2021
    Inventors: Matthew Doyle, James Busby, Edward N. Cohen, John R. Dangler, Gerald Bartley, Michael Fisher, Arthur Higby, David Clifford Long, Mark J. Jeanson, Darryl Becker
  • Patent number: 11026324
    Abstract: Embodiments of the invention are directed to a method for creating a secure volume. A method includes adhering a flexible circuit to a surface of an enclosure. A first portion of the flexible circuit extends outward from the perimeter of the enclosure. A second portion of the flexible circuit is adhered to the center portion of the enclosure. Pressure is applied to the flexible circuit to ensure that it is affixed to the enclosure. The flexible circuit and the enclosure are then subjected to an annealing temperature. The duration and temperature are based on the adhesive and flexible circuit material. The extended portion of the flexible circuit is coated with an adhesive and folded over the second portion of the flexible circuit. Pressure is applied to the folded flexible circuit. The folded flexible circuit is then subjected to an annealing temperature.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: June 1, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Arthur Higby, David Long, Michael Fisher, James Busby, John R. Dangler, Robert Weiss, Zachary Thomas Dreiss, Rorie Paul Reyes
  • Patent number: 11017124
    Abstract: An optical electromagnetic radiation (EM) emitter and receiver are located upon a printed circuit board (PCB) layer and are connected to an optical security pathway. A predetermined reference flux is determined, the reference flux being the expected EM transmitted by the optical security pathway and received by the receiver. When the PCB is subject to an unauthorized access thereof (e.g., drilled, sawed, cut, etc.), the optical EM transferred by optical security pathway is altered. An optical monitoring device that monitors the flux of the optical EM received by the receiver detects a change in flux, in relation to the reference flux, and passes a tamper signal to one or more computer system devices to respond to the unauthorized access. For example, one or more cryptographic adapter card or computer system functions or secured crypto components may be disabled.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: May 25, 2021
    Assignee: International Business Machines Corporation
    Inventors: Layne A. Berge, John R. Dangler, Matthew S. Doyle, Thomas W. Liang, Manuel Orozco
  • Patent number: 10992979
    Abstract: Methods, systems and computer program products for providing modifications to an electronic messaging space to enhance presentation of content in a video broadcast are provided. Aspects include receiving electronic messaging space data including a location and a message content for each of a plurality of electronic messaging spaces. Aspects also include determining that a target electronic messaging space is visible in a video broadcast. Responsive to determining a location depicted by the video broadcast, aspects include determining a location of the target electronic messaging space and a message content displayed by the target electronic messaging space. Aspects also include causing the target electronic messaging space to modify the display of the message content for improved presentation via the video broadcast.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: April 27, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John R. Dangler, David T. Nelson
  • Publication number: 20210120712
    Abstract: Provided is a system for removing an electronic component from a printed circuit board (PCB). The system may comprise a heating well configured to hold a rework liquid. The system may further comprise a head system configured to create a liquid-tight seal around an electronic component. The system may further comprise a nozzle and a mechanical capture device disposed within the head system. The mechanical capture device may be configured to attach to the electronic component. The system may further comprise a controller. The controller may be configured to release the rework liquid through the nozzle and onto the electronic component and lift the electronic component off the PCB.
    Type: Application
    Filed: October 22, 2019
    Publication date: April 22, 2021
    Inventors: Theron Lee Lewis, Jennifer I. Bennett, James D. Bielick, David J. Braun, John R. Dangler, Stephen Michael Hugo, Timothy Jennings, Timothy P. Younger
  • Publication number: 20210096157
    Abstract: Electrical current flow in a ball grid array (BGA) package can be measured by an apparatus including an integrated circuit (IC) electrically connected to the BGA package. Solder balls connect the BGA package to a printed circuit board (PCB). A current sense mesh can be placed between adjacent solder balls and is attached to the upper surface of the PCB. The solder balls are electrically connected to supply current from the PCB through the BGA package to the IC. A MUX/Sequencer can sequentially connect wires of the current sense mesh to an amplifier. The amplifier can amplify a voltage induced on the current sense mesh by current flow into the BGA package. A sensing analog-to-digital converter (ADC) is electrically connected to convert a voltage at the output of the amplifier into digital output signals.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Layne A. Berge, Matthew Doyle, Kyle Schoneck, Thomas W. Liang, Matthew A. Walther, Jason J. Bjorgaard, John R. Dangler
  • Publication number: 20210096177
    Abstract: Electrical current flow in a ball grid array (BGA) package can be measured by an apparatus including an integrated circuit (IC) electrically connected to the BGA package. Solder balls connect the BGA package to a printed circuit board (PCB). A current sense loop can be fabricated on a wiring plane of the PCB to encircle a current supply via that supplies current to an IC mounted on the BGA package. A MUX/Sequencer can sequentially connect wires of the current sense loop to an amplifier. The amplifier can amplify a voltage induced on the current sense mesh by current flow into the BGA package. A sensing analog-to-digital converter (ADC) is electrically connected to convert a voltage at the output of the amplifier into digital output signals.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Layne A. Berge, Matthew Doyle, Kyle Schoneck, Thomas W. Liang, Matthew A. Walther, Jason J. Bjorgaard, John R. Dangler
  • Publication number: 20210096168
    Abstract: Electrical current flow in a ball grid array (BGA) package can be measured by an apparatus including an integrated circuit (IC) electrically connected to the BGA package. Solder balls connect the BGA package to a printed circuit board (PCB) and are arranged to provide a contiguous channel for a current sense wire. A subset of solder balls is electrically connected to supply current from the PCB through the BGA package to the IC. The current sense wire is attached to the upper surface of the PCB, within the contiguous channel, and surrounds the subset of solder balls. An amplifier is electrically connected to the current sense wire ends to amplify a voltage induced on the current sense wire by current flow into the BGA package. A sensing analog-to-digital converter (ADC) is electrically connected to convert a voltage at the output of the amplifier into digital output signals.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Layne A. Berge, Matthew Doyle, Kyle Schoneck, Thomas W. Liang, Matthew A. Walther, Jason J. Bjorgaard, John R. Dangler
  • Patent number: 10960463
    Abstract: The present disclosure describes embedding thermally-resistant flexible cabling within a metal casting during die-casting. A die-casting process may include fixing the thermally-resistant flexible cabling within a die, and die-casting the metal to form a metal casting having the thermally-resistant flexible cabling embedded within the metal casting. In some cases, the thermally-resistant flexible cabling may be utilized for grounding of the metal casting.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: March 30, 2021
    Assignee: International Business Machines Corporation
    Inventors: John R. Dangler, Austin Carter, Gunnar Mills, Colin E. Masterson
  • Patent number: 10956623
    Abstract: The present invention relates to a method to fabricate a tamper respondent assembly. The tamper respondent assembly includes an electronic component and an enclosure fully enclosing the electronic component. The method includes printing, by a 3-dimensional printer, a printed circuit board that forms a bottom part of the enclosure and includes a first set of embedded detection lines for detecting tampering events and signal lines for transferring signals between the electronic component and an external device. The electronic component is assembled on the printed circuit board, and a cover part of the enclosure is printed on the printed circuit board. The cover part includes a second set of embedded detection lines. Sensing circuitry can be provided for sensing the conductance of the first set of embedded detection lines and the second set of embedded detection lines to detect tampering events.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Silvio Dragone, Michael Fisher, William Santiago Fernandez, Ryan Elsasser, James Busby, John R. Dangler, William L. Brodsky, David C. Long, Stefano S. Oggioni
  • Publication number: 20210075179
    Abstract: Aspects of the invention include a stutter step press-fit connector insertion process. A non-limiting example of a method includes applying a force to at least one press-fit pin for causing the press-fit pin to move in a direction of a through-hole of a printed circuit board, wherein a value of the force increases as the press-fit pin moves in the direction of the through-hole. In response to detecting contact between the press-fit pin and a surface profile of the through-hole, a first pause of the force is introduced for a pre-determined time interval, wherein the value of the force remains generally static during the pre-determined time interval. The force is reapplied to the press-fit pin upon completion of the time interval, wherein the value of the force increases during the reapplying until the press-fit pin is inserted into the through-hole.
    Type: Application
    Filed: September 10, 2019
    Publication date: March 11, 2021
    Inventors: Timothy Jennings, Theron Lee Lewis, Timothy Younger, David Braun, John R. Dangler, Jennifer I. Bennett, Stephen Hugo, James Bielick
  • Publication number: 20200409401
    Abstract: A system can control, with a positive temperature-voltage correlation, an output of a voltage regulator with a Peltier device. The Peltier device can receive heat from a heat-producing electronic device, and can have a positive terminal and a negative terminal. A voltage regulator circuit can include a driver device electrically coupled to an input voltage and an output terminal electrically coupled to one of the Peltier device terminals. The voltage regulator circuit can also include a differential amplifier electrically coupled to a reference voltage, an input electrically coupled to another Peltier device terminal and an output electrically coupled to the driver device. The differential amplifier can, in response to a voltage produced by the Peltier device, modulate, with a positive temperature-voltage correlation, an output voltage on the output terminal of the driver device.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Layne A. Berge, John R. Dangler, Jason J. Bjorgaard, Kyle Schoneck, Matthew Doyle, Thomas W. Liang, Matthew A. Walther