Patents by Inventor John R. DelFavero

John R. DelFavero has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8251914
    Abstract: A method of sampling one or more respiratory profile characteristics and monitoring a variety of respiratory profile parameters. The sampled respiratory characteristics include respiratory flow rate, respiratory pressure, and partial pressure of at least one constituent of a patient's respiration. The method detects patient breaths, determines whether each breath is a spontaneous breath or a ventilator-induced breath and calculates various respiratory profile parameters based on the sampled measurements. The method displays the respiratory profile parameters in graphic and numeric forms. Preferably, the method allows a user to select the displayed respiratory profile parameters.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: August 28, 2012
    Assignee: RIC Investments, LLC
    Inventors: Rich H. Daniels, John R. Delfavero, Barry J. Feldman, Paul B. Gunneson, Michael B. Jaffe, Eric P. Wigforss
  • Patent number: 8108173
    Abstract: A sensor that determines information related to a gaseous analyte in a body of fluid. The sensor comprises an emitter, a luminescable medium, a radiation sensor, and a processor. The emitter emits electromagnetic radiation having an oscillating intensity. The luminescable medium communicates with the body of fluid and emits luminescent radiation in response to the received electromagnetic radiation. The radiation sensor receives the luminescent radiation, and generates an output signal based on the intensity of the received luminescent radiation. The processor samples the output signal generated by the radiation sensor at two or more predetermined periodic points over the oscillation of the intensity of the electromagnetic radiation to determine information from the samples related to a phase difference between the oscillation of the intensity of the electromagnetic radiation emitted by the emitter and oscillation of the intensity of the luminescent radiation received by the radiation sensor.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: January 31, 2012
    Assignee: RIC Investments, LLC
    Inventors: Jesus D. Martin, John R. DelFavero
  • Patent number: 7991448
    Abstract: A method for removing motion artifacts from devices for sensing bodily parameters and apparatus and system for effecting same that includes analyzing segments of measured data representing bodily parameters and possibly noise from motion artifacts. Each data segment is frequency analyzed to determine up to three candidate peaks for further analysis. Up to three candidate frequencies may be filtered and various parameters associated with each candidate frequency are calculated. A pulse-estimate input may also be accepted from an external source. The best frequency, if one exists, is determined by arbitrating the candidate frequencies and the pulse-estimate input using the calculated parameters according to predefined criteria. If a best frequency is found, a pulse rate and SpO2 may be output. If a best frequency is not found, other, conventional techniques for calculating pulse rate and SpO2 may be used.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: August 2, 2011
    Assignee: Philips Electronics North America Corporation
    Inventors: Reuben W. Edgar, Jr., August J. Allo, Jr., Paul B. Gunneson, Jesus D. Martin, John R. DelFavero, Michael B. Jaffe
  • Publication number: 20100318309
    Abstract: A sensor that determines information related to a gaseous analyte in a body of fluid. The sensor comprises an emitter, a luminescable medium, a radiation sensor, and a processor. The emitter emits electromagnetic radiation having an oscillating intensity. The luminescable medium communicates with the body of fluid and emits luminescent radiation in response to the received electromagnetic radiation. The radiation sensor receives the luminescent radiation, and generates an output signal based on the intensity of the received luminescent radiation. The processor samples the output signal generated by the radiation sensor at two or more predetermined periodic points over the oscillation of the intensity of the electromagnetic radiation to determine information from the samples related to a phase difference between the oscillation of the intensity of the electromagnetic radiation emitted by the emitter and oscillation of the intensity of the luminescent radiation received by the radiation sensor.
    Type: Application
    Filed: August 19, 2008
    Publication date: December 16, 2010
    Inventors: Jesus D. Martin, John R. DelFavero
  • Publication number: 20100097380
    Abstract: A method of sampling one or more respiratory profile characteristics and monitoring a variety of respiratory profile parameters. The sampled respiratory characteristics include respiratory flow rate, respiratory pressure, and partial pressure of at least one constituent of a patient's respiration. The method detects patient breaths, determines whether each breath is a spontaneous breath or a ventilator-induced breath and calculates various respiratory profile parameters based on the sampled measurements. The method displays the respiratory profile parameters in graphic and numeric forms. Preferably, the method allows a user to select the displayed respiratory profile parameters.
    Type: Application
    Filed: December 23, 2009
    Publication date: April 22, 2010
    Applicant: RIC INVESTMENTS, LLC
    Inventors: RICH H. DANIELS, JOHN R. DELFAVERO, BARRY J. FELDMAN, PAUL B. GUNNESON, MICHAEL B. JAFFE, ERIC P. WIGFORSS
  • Patent number: 7662106
    Abstract: A method of sampling one or more respiratory profile characteristics and monitoring a variety of respiratory profile parameters. The sampled respiratory characteristics include respiratory flow rate, respiratory pressure, and partial pressure of at least one constituent of a patient's respiration. The method detects patient breaths, determines whether each breath is a spontaneous breath or a ventilator-induced breath and calculates various respiratory profile parameters based on the sampled measurements. The method displays the respiratory profile parameters in graphic and numeric forms. Preferably, the method allows a user to select the displayed respiratory profile parameters.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: February 16, 2010
    Assignee: Ric Investments, LLC.
    Inventors: Rich H. Daniels, John R. DelFavero, Barry J. Feldman, Paul B. Gunneson, Michael B. Jaffe, Eric P. Wigforss
  • Patent number: 7432508
    Abstract: A gas measurement system of this invention includes a detector assembly having a beamsplitter adapted to separate infrared radiation into a first beam and a second beam and a mirror adapted to receive the first beam from the beamsplitter. The first and second beams are directed to first and second detectors that are disposed in a common plane. In one embodiment, the optical elements are provided on or in an optical block. In another embodiment, the gas measurement system includes a housing that contains an infrared absorption gas measurement assembly, a luminescence quenching gas measurement assembly, and a processor that is programmed to measure gas constituents of a gas flow based on an output of the infrared absorption gas measurement assembly and the luminescence quenching gas measurement assembly.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: October 7, 2008
    Assignee: RIC Investments, LLC
    Inventors: Rich H. Daniels, Richard Nelson, John R. DelFavero, Raymond G. Davis, Anthony T. Pierry, James T. Russell
  • Patent number: 7291851
    Abstract: A method of modulating an infrared radiation (IR) source that includes applying a time-varying, periodic voltage signal to the IR source, measuring a parameter of the voltage signal, and adjusting the voltage signal to maintain a substantially constant delivered power to the IR source. Adjusting the voltage signal is done based on the measured parameter and a predetermined relationship between the measured parameter of the voltage pulse and a resistance of such an infrared radiation source. Alternatively, the method includes applying a the voltage pulse, measuring a first parameter of the voltage pulse and a second parameter of a current passing through the infrared radiation source resulting from the applying step, and adjusting the voltage pulse to maintain a substantially constant delivered power to the infrared radiation source based on the first parameter and the second parameter.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: November 6, 2007
    Assignee: RIC Investments, LLC
    Inventors: John R DelFavero, Anthony T Pierry
  • Patent number: 7072702
    Abstract: A method for removing motion artifacts from devices for sensing bodily parameters and apparatus and system for effecting same. The method includes analyzing segments of measured data representing bodily parameters and possibly noise from motion artifacts. Each segment of measured data may correspond to a single light signal transmitted and detected after transmission or reflection through bodily tissue. Each data segment is frequency analyzed to determine up to three candidate peaks for further analysis. Each of the up to three candidate frequencies may be filtered and various parameters associated with each of the up to three candidate frequencies are calculated. The best frequency, if one exists, is determined by arbitrating the candidate frequencies using the calculated parameters according to predefined criteria. If a best frequency is found, a pulse rate and SPO2 may be output. If a best frequency is not found, other, conventional techniques for calculating pulse rate and SpO2 may be used.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: July 4, 2006
    Assignee: RIC Investments, LLC
    Inventors: Reuben W. Edgar, Jr., August J. Allo, Jr., Paul B. Gunneson, Jesus D. Martin, John R. DelFavero, Michael B. Jaffe
  • Patent number: 6810277
    Abstract: A method for removing motion artifacts from devices for sensing bodily parameters and apparatus and system for effecting same. The method includes analyzing segments of measured data representing bodily parameters and possibly noise from motion artifacts. Each segment of measured data may correspond to a single light signal transmitted and detected after transmission or reflection through bodily tissue. Each data segment is frequency analyzed to determine up to three candidate peaks for further analysis. Each of the up to three candidate frequencies may be filtered and various parameters associated with each of the up to three candidate frequencies are calculated. The best frequency, if one exists, is determined by arbitrating the candidate frequencies using the calculated parameters according to predefined criteria. If a best frequency is found, a pulse rate and SpO2 may be output. If a best frequency is not found, other, conventional techniques for calculating pulse rate and SpO2 may be used.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: October 26, 2004
    Assignee: RIC Investments, Inc.
    Inventors: Reuben W. Edgar, Jr., August J. Allo, Jr., Paul B. Gunneson, Jesus D. Martin, John R. DelFavero, Michael B. Jaffe
  • Publication number: 20030045807
    Abstract: A method of sampling one or more respiratory profile characteristics and monitoring a variety of respiratory profile parameters. The sampled respiratory characteristics include respiratory flow rate, respiratory pressure, and partial pressure of at least one constituent of a patient's respiration. The method detects patient breaths, determines whether each breath is a spontaneous breath or a ventilator-induced breath and calculates various respiratory profile parameters based on the sampled measurements. The method displays the respiratory profile parameters in graphic and numeric forms. Preferably, the method allows a user to select the displayed respiratory profile parameters.
    Type: Application
    Filed: October 15, 2002
    Publication date: March 6, 2003
    Inventors: Rich Daniels, John R. DelFavero, Barry J. Feldman, Paul B. Gunneson, Michael B. Jaffe, Eric P. Wigforss
  • Patent number: 6519486
    Abstract: A method for removing motion artifacts from devices for sensing bodily parameters and apparatus and system for effecting same. The method includes analyzing segments of measured data representing bodily parameters and possibly noise from motion artifacts. Each segment of measured data may correspond to a single light signal transmitted and detected after transmission or reflection through bodily tissue. Each data segment is frequency analyzed to determine up to three candidate peaks for further analysis. Each of the up to three candidate frequencies may be filtered and various parameters associated with each of the up to three candidate frequencies are calculated. The best frequency, if one exists, is determined by arbitrating the candidate frequencies using the calculated parameters according to predefined criteria. If a best frequency is found, a pulse rate and SpO2 may be output. If a best frequency is not found, other, conventional techniques for calculating pulse rate and Spo2 may be used.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: February 11, 2003
    Assignee: NTC Technology Inc.
    Inventors: Reuben W. Edgar, Jr., August J. Allo, Jr., Paul B. Gunneson, Jesus D. Martin, John R. DelFavero, Michael B. Jaffe
  • Publication number: 20030009091
    Abstract: A method for removing motion artifacts from devices for sensing bodily parameters and apparatus and system for effecting same. The method includes analyzing segments of measured data representing bodily parameters and possibly noise from motion artifacts. Each segment of measured data may correspond to a single light signal transmitted and detected after transmission or reflection through bodily tissue. Each data segment is frequency analyzed to determine up to three candidate peaks for further analysis. Each of the up to three candidate frequencies may be filtered and various parameters associated with each of the up to three candidate frequencies are calculated. The best frequency, if one exists, is determined by arbitrating the candidate frequencies using the calculated parameters according to predefined criteria. If a best frequency is found, a pulse rate and SpO2 may be output. If a best frequency is not found, other, conventional techniques for calculating pulse rate and SpO2 may be used.
    Type: Application
    Filed: August 6, 2002
    Publication date: January 9, 2003
    Inventors: Reuben W. Edgar, August J. Allo, Paul B. Gunneson, Jesus D. Martin, John R. DelFavero, Michael B. Jaffe
  • Patent number: 6471658
    Abstract: A method of sampling one or more respiratory profile characteristics and monitoring a variety of respiratory profile parameters. The sampled respiratory characteristics include respiratory flow rate, respiratory pressure, and partial pressure of at least one constituent of a patient's respiration. The method detects patient breaths, determines whether each breath is a spontaneous breath or a ventilator-induced breath and calculates various respiratory profile parameters based on the sampled measurements. The method displays the respiratory profile parameters in graphic and numeric forms. Preferably, the method allows a user to select the displayed respiratory profile parameters.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: October 29, 2002
    Assignee: NTC Technology, Inc.
    Inventors: Rich H Daniels, John R. DelFavero, Barry J. Feldman, Paul B. Gunneson, Michael B. Jaffe, Eric P. Wigforss
  • Patent number: 6393311
    Abstract: A method for removing motion artifacts from devices for sensing bodily parameters and apparatus and system for effecting same. The method includes analyzing segments of measured data representing bodily parameters and possibly noise from motion artifacts. Each segment of measured data may correspond to a single light signal transmitted and detected after transmission or reflection through bodily tissue. Each data segment is frequency analyzed to determine dominant frequency components. The frequency component which represents at least one bodily parameter of interest is selected for further processing. The segment of data is subdivided into subsegments, each subsegment representing one heartbeat. The subsegments are used to calculate a modified average pulse as a candidate output pulse.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: May 21, 2002
    Assignee: NTC Technology Inc.
    Inventors: Reuben W. Edgar, Jr., August J. Allo, Jr., Jesus D. Martin, John R. DelFavero, Michael B. Jaffe
  • Patent number: 6179784
    Abstract: A method of sampling one or more respiratory profile characteristics and monitoring a variety of respiratory profile parameters. The sampled respiratory characteristics include respiratory flow rate, respiratory pressure, and partial pressure of at least one constituent of a patient's respiration. The method detects patient breaths, determines whether each breath, is a spontaneous breath or a ventilator-induced breath, and calculates various respiratory profile parameters based on the sampled measurements. The method displays the respiratory profile parameters in graphic and numeric forms. Preferably, the method allows a user to select the displayed respiratory profile parameters.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: January 30, 2001
    Assignee: NTC Technology Inc.
    Inventors: Rich H. Daniels, John R. DelFavero, Barry J. Feldman, Paul B. Gunneson, Michael B. Jaffe, Eric P. Wigforss
  • Patent number: 6099481
    Abstract: A method of sampling one or more respiratory profile characteristics and monitoring a variety of respiratory profile parameters. The sampled respiratory characteristics include respiratory flow rate, respiratory pressure, and partial pressure of at least one constituent of a patient's respiration. The method detects patient breaths, determines whether each breath is a spontaneous breath or a ventilator-induced breath, and calculates various respiratory profile parameters based on the sampled measurements. The method displays the respiratory profile parameters in graphic and numeric forms. Preferably, the method allows a user to select the displayed respiratory profile parameters.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: August 8, 2000
    Assignee: NTC Technology, Inc.
    Inventors: Rich H. Daniels, John R. DelFavero, Barry J. Feldman, Paul B. Gunneson, Michael B. Jaffe, Eric P. Wigforss