Patents by Inventor John R. Jordan, III

John R. Jordan, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10535131
    Abstract: A defect detection method includes acquiring a reference image; selecting a target region of the reference image; identifying, based on a matching metric, one or more comparative regions of the reference image corresponding to the target region; acquiring a test image; masking the test image with the target region of the reference image and the one or more comparative regions of the reference image; defining a defect threshold for the target region in the test image based on the one or more comparative regions in the test image; and determining whether the target region of the test image contains a defect based on the defect threshold.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: January 14, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Christopher Maher, Bjorn Brauer, Vijayakumar Ramachandran, Laurent Karsenti, Eliezer Rosengaus, John R. Jordan, III, Roni Miller
  • Patent number: 9922269
    Abstract: Defect classification includes acquiring one or more images of a specimen including multiple defects, grouping the defects into groups of defect types based on the attributes of the defects, receiving a signal from a user interface device indicative of a first manual classification of a selected number of defects from the groups, generating a classifier based on the first manual classification and the attributes of the defects, classifying, with the classifier, one or more defects not manually classified by the manual classification, identifying the defects classified by the classifier having the lowest confidence level, receiving a signal from the user interface device indicative of an additional manual classification of the defects having the lowest confidence level, determining whether the additional manual classification identifies one or more additional defect types not identified in the first manual classification, and iterating the procedure until no new defect types are found.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: March 20, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Sankar Venkataraman, Li He, John R. Jordan, III, Oksen Baris, Harsh Sinha
  • Patent number: 9898811
    Abstract: Defect classification includes acquiring one or more images of a specimen, receiving a manual classification of one or more training defects based on one or more attributes of the one or more training defects, generating an ensemble learning classifier based on the received manual classification and the attributes of the one or more training defects, generating a confidence threshold for each defect type of the one or more training defects based on a received classification purity requirement, acquiring one or more images including one or more test defects, classifying the one or more test defects with the generated ensemble learning classifier, calculating a confidence level for each of the one or more test defects with the generated ensemble learning classifier and reporting one or more test defects having a confidence level below the generated confidence threshold via the user interface device for manual classification.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: February 20, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Li He, Chien-Huei Adam Chen, Sankar Venkataraman, John R. Jordan, III, Huajun Ying, Harsh Sinha
  • Publication number: 20170140516
    Abstract: A defect detection method includes acquiring a reference image; selecting a target region of the reference image; identifying, based on a matching metric, one or more comparative regions of the reference image corresponding to the target region; acquiring a test image; masking the test image with the target region of the reference image and the one or more comparative regions of the reference image; defining a defect threshold for the target region in the test image based on the one or more comparative regions in the test image; and determining whether the target region of the test image contains a defect based on the defect threshold.
    Type: Application
    Filed: November 14, 2016
    Publication date: May 18, 2017
    Inventors: Christopher Maher, Bjorn Brauer, Vijayakumar Ramachandran, Laurent Karsenti, Eliezer Rosengaus, John R. Jordan, III, Roni Miller
  • Publication number: 20160358041
    Abstract: Defect classification includes acquiring one or more images of a specimen including multiple defects, grouping the defects into groups of defect types based on the attributes of the defects, receiving a signal from a user interface device indicative of a first manual classification of a selected number of defects from the groups, generating a classifier based on the first manual classification and the attributes of the defects, classifying, with the classifier, one or more defects not manually classified by the manual classification, identifying the defects classified by the classifier having the lowest confidence level, receiving a signal from the user interface device indicative of an additional manual classification of the defects having the lowest confidence level, determining whether the additional manual classification identifies one or more additional defect types not identified in the first manual classification, and iterating the procedure until no new defect types are found.
    Type: Application
    Filed: January 29, 2016
    Publication date: December 8, 2016
    Inventors: Sankar Venkataraman, Li He, John R. Jordan, III, Oksen Baris, Harsh Sinha
  • Publication number: 20160328837
    Abstract: Defect classification includes acquiring one or more images of a specimen, receiving a manual classification of one or more training defects based on one or more attributes of the one or more training defects, generating an ensemble learning classifier based on the received manual classification and the attributes of the one or more training defects, generating a confidence threshold for each defect type of the one or more training defects based on a received classification purity requirement, acquiring one or more images including one or more test defects, classifying the one or more test defects with the generated ensemble learning classifier, calculating a confidence level for each of the one or more test defects with the generated ensemble learning classifier and reporting one or more test defects having a confidence level below the generated confidence threshold via the user interface device for manual classification.
    Type: Application
    Filed: June 24, 2015
    Publication date: November 10, 2016
    Inventors: Li He, ChienHuei Adam Chen, Sankar Venkataraman, John R. Jordan, III, Huajun Ying, Sinha Harsh
  • Patent number: 5864394
    Abstract: A high throughput surface inspection system with enhanced detection sensitivity is described. The acquired data is processed in real time at a rate of below 50 MHz thereby reducing the cost for data processing. Anomalies are detected and verified by comparing adjacent repeating patterns and the height of the surface is monitored and corrected dynamically to reduce misregistration errors between adjacent repeating patterns. Local thresholds employing neighborhood information are used for detecting and verifying the presence of anomalies. The sampled point spread function of the combined illumination and collection system is exploited for anomaly detection and verification.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: January 26, 1999
    Assignee: Kla-Tencor Corporation
    Inventors: John R. Jordan, III, Mehrdad Nikoonahad, Keith B. Wells