Patents by Inventor John R. SALASIN

John R. SALASIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11993009
    Abstract: Additive manufacturing methods use a surrogate slurry to iteratively develop an additive manufacturing protocol and then substitutes a final slurry composition to then additively manufacture a final component using the developed additive manufacturing protocol. In the nuclear reactor component context, the final slurry composition is a nuclear fuel slurry having a composition: 30-45 vol. % monomer resin, 30-70 vol. % plurality of particles of uranium-containing material, >0-7 vol. % dispersant, photoactivated dye, photoabsorber, photoinitiator, and 0-18 vol. % (as a balance) diluent. The surrogate slurry has a similar composition, but a plurality of surrogate particles selected to represent a uranium-containing material are substituted for the particles of uranium-containing material. The method provides a means for in-situ monitoring of characteristics of the final component during manufacture as well as in-situ volumetric inspection.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: May 28, 2024
    Assignee: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. Fisher, John R. Salasin, Bryan Blake Wiggins
  • Publication number: 20240038406
    Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 1, 2024
    Applicant: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. FISHER, John R. SALASIN, Craig D. GRAMLICH, Jonathan K. WITTER
  • Publication number: 20240038405
    Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 1, 2024
    Applicant: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. FISHER, John R. SALASIN, Craig D. GRAMLICH, Jonathan K. WITTER
  • Publication number: 20240021327
    Abstract: A heat pipe fuel element includes an evaporation section, a condensing section, a capillary section connecting the evaporation section to the condensing section, and a primary coolant. In a cross-section in a plane perpendicular to a longitudinal axis of the evaporation section, the heat pipe fuel element includes a cladding layer enclosing an interior area including a fuel body formed of a fissionable fuel composition and that has an outer surface oriented toward the cladding layer and an inner surface defining a periphery of a vaporization space of the evaporation section. The fuel body has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS), and the evaporation sections of a plurality of heat pipe fuel elements are arranged in a phyllotaxis pattern (as seen in a cross-section in a plane perpendicular to a longitudinal axis of the active core region).
    Type: Application
    Filed: July 11, 2023
    Publication date: January 18, 2024
    Applicant: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. FISHER, Craig D. GRAMLICH, Ross E. PIVOVAR, John R. SALASIN, Jonathan K. WITTER
  • Publication number: 20240001607
    Abstract: Additive manufacturing compositions include low-absorbing particles or non-absorbing particles that have an absorbance for wavelengths of 300 nm to 700 nm that is equal to or greater than 0 Au and is less 1.0 Au, such as 0.001 Au absorbance Au. Slurries including such particles and an uranium-containing particle and that are used in additive manufacturing processes have an increased penetration depth for curative radiation. Removal of low-absorbing particles or non-absorbing particles during post-processing of as-manufactured products results in pores that create porosity in the as-manufactured product that provide a volume accommodating fission gases and/or can enhance wicking of certain heat pipe coolant liquids.
    Type: Application
    Filed: August 16, 2023
    Publication date: January 4, 2024
    Applicant: BWXT Advanced Technologies LLC
    Inventors: John R. SALASIN, Benjamin D. FISHER
  • Patent number: 11817225
    Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: November 14, 2023
    Assignee: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. Fisher, John R. Salasin, Craig D. Gramlich, Jonathan K. Witter
  • Publication number: 20230339175
    Abstract: Additive manufacturing compositions include low-absorbing particles or non-absorbing particles that have an absorbance for wavelengths of 300 nm to 700 nm that is equal to or greater than 0 Au and is less 1.0 Au, such as 0.001 Au?absorbance?0.7 Au. Slurries including such particles and an uranium-containing particle and that are used in additive manufacturing processes have an increased penetration depth for curative radiation. Removal of low-absorbing particles or non-absorbing particles during post-processing of as-manufactured products results in pores that create porosity in the as-manufactured product that provide a volume accommodating fission gases and/or can enhance wicking of certain heat pipe coolant liquids.
    Type: Application
    Filed: July 3, 2023
    Publication date: October 26, 2023
    Applicant: BWXT Advanced Technologies LLC
    Inventors: John R. SALASIN, Benjamin D. FISHER
  • Publication number: 20230282374
    Abstract: Fuel bundle has plurality of twisted ribbon fuel rodlets arranged hexagonal packing or circle packing arrangement in a reactor core encased in a multilayer casing. Arrangement of twisted ribbon fuel rodlets is facilitated by rodlet seating fixture with seating surface having a plurality of protrusions that form a receiving space for ends of the twisted ribbon fuel rodlets. Manufacture of the fuel bundle incorporates fiber manufacturing technologies and, optionally, infiltration of spaces in the reactor core by infiltrant. Twisted ribbon fuel rodlet manufacturing system has sub-systems that impart twist periodicity to extruded ribbons, inspect twisted extruded ribbons, and cut twisted extruded ribbons to length. Inspection sorts twisted ribbon fuel rodlets as well as provides feedback to adjust operation of sub-systems. The fuel bundle (and optional fuel bundle support) can be incorporated into a fuel assembly of nuclear propulsion fission reactor structure of, for example, a nuclear thermal propulsion engine.
    Type: Application
    Filed: March 7, 2023
    Publication date: September 7, 2023
    Applicant: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. FISHER, John R. SALASIN, Marilyn I. DELGADO
  • Publication number: 20230282373
    Abstract: Fuel bundle has plurality of twisted ribbon fuel rodlets arranged in hexagonal packing or circle packing arrangement in a reactor core encased in a multilayer casing. Arrangement of twisted ribbon fuel rodlets is facilitated by rodlet seating fixture with seating surface having a plurality of protrusions that form a receiving space for ends of the twisted ribbon fuel rodlets. Manufacture of the fuel bundle incorporates fiber manufacturing technologies and, optionally, infiltration of spaces in the reactor core by infiltrant. Twisted ribbon fuel rodlet manufacturing system has sub-systems that impart twist periodicity to extruded ribbons, inspect twisted extruded ribbons, and cut twisted extruded ribbons to length. Inspection sorts twisted ribbon fuel rodlets as well as provides feedback to adjust operation of sub-systems.
    Type: Application
    Filed: March 7, 2023
    Publication date: September 7, 2023
    Applicant: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. FISHER, John R. SALASIN
  • Publication number: 20230282380
    Abstract: Fuel bundle has plurality of twisted ribbon fuel rodlets arranged hexagonal packing or circle packing arrangement in a reactor core encased in a multilayer casing. Arrangement of twisted ribbon fuel rodlets is facilitated by rodlet seating fixture with seating surface having a plurality of protrusions that form a receiving space for ends of the twisted ribbon fuel rodlets. Manufacture of the fuel bundle incorporates fiber manufacturing technologies and, optionally, infiltration of spaces in the reactor core by infiltrant. Twisted ribbon fuel rodlet manufacturing system has sub-systems that impart twist periodicity to extruded ribbons, inspect twisted extruded ribbons, and cut twisted extruded ribbons to length. Inspection sorts twisted ribbon fuel rodlets as well as provides feedback to adjust operation of sub-systems. The fuel bundle (and optional fuel bundle support) can be incorporated into a fuel assembly of nuclear propulsion fission reactor structure of, for example, a nuclear thermal propulsion engine.
    Type: Application
    Filed: March 7, 2023
    Publication date: September 7, 2023
    Applicant: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. FISHER, John R. SALASIN, David J. GARNER, Christopher N. FOLMAR, Sabrina McCOY
  • Patent number: 11731350
    Abstract: Additive manufacturing compositions include low-absorbing particles or non-absorbing particles that have an absorbance for wavelengths of 300 nm to 700 nm that is equal to or greater than 0 Au and is less 1.0 Au, such as 0.001 Au?absorbance?0.7 Au. Slurries including such particles and an uranium-containing particle and that are used in additive manufacturing processes have an increased penetration depth for curative radiation. Removal of low-absorbing particles or non-absorbing particles during post-processing of as-manufactured products results in pores that create porosity in the as-manufactured product that provide a volume accommodating fission gases and/or can enhance wicking of certain heat pipe coolant liquids.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: August 22, 2023
    Assignee: BWXT Advanced Technologies LLC
    Inventors: John R. Salasin, Benjamin D. Fisher
  • Publication number: 20220351870
    Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.
    Type: Application
    Filed: June 29, 2022
    Publication date: November 3, 2022
    Applicant: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. FISHER, John R. SALASIN, Craig D. GRAMLICH, Jonathan K. WITTER
  • Patent number: 11424041
    Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: August 23, 2022
    Assignee: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. Fisher, John R. Salasin, Craig D. Gramlich, Jonathan K. Witter
  • Publication number: 20220134650
    Abstract: Additive manufacturing compositions include low-absorbing particles or non-absorbing particles that have an absorbance for wavelengths of 300 nm to 700 nm that is equal to or greater than 0 Au and is less 1.0 Au, such as 0.001 Au?absorbance?0.7 Au. Slurries including such particles and an uranium-containing particle and that are used in additive manufacturing processes have an increased penetration depth for curative radiation. Removal of low-absorbing particles or non-absorbing particles during post-processing of as-manufactured products results in pores that create porosity in the as-manufactured product that provide a volume accommodating fission gases and/or can enhance wicking of certain heat pipe coolant liquids.
    Type: Application
    Filed: November 1, 2021
    Publication date: May 5, 2022
    Applicant: BWXT Advanced Technologies LLC
    Inventors: John R. SALASIN, Benjamin D. FISHER
  • Publication number: 20200365290
    Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.
    Type: Application
    Filed: March 31, 2020
    Publication date: November 19, 2020
    Applicant: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. FISHER, John R. SALASIN, Craig D. GRAMLICH, Jonathan K. WITTER
  • Publication number: 20200353681
    Abstract: Additive manufacturing methods use a surrogate slurry to iteratively develop an additive manufacturing protocol and then substitutes a final slurry composition to then additively manufacture a final component using the developed additive manufacturing protocol. In the nuclear reactor component context, the final slurry composition is a nuclear fuel slurry having a composition: 30-45 vol. % monomer resin, 30-70 vol. % plurality of particles of uranium-containing material, >0-7 vol. % dispersant, photoactivated dye, photoabsorber, photoinitiator, and 0-18 vol. % (as a balance) diluent. The surrogate slurry has a similar composition, but a plurality of surrogate particles selected to represent a uranium-containing material are substituted for the particles of uranium-containing material. The method provides a means for in-situ monitoring of characteristics of the final component during manufacture as well as in-situ volumetric inspection.
    Type: Application
    Filed: March 31, 2020
    Publication date: November 12, 2020
    Applicant: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. FISHER, John R. SALASIN, Brian Blake WIGGINS
  • Publication number: 20200308064
    Abstract: Pre-ceramic particle solutions can prepared by a Coordinated-PDC process, a Direct-PDC process or a Coordinated-Direct-PDC process. The pre-ceramic particle solution includes a polymer selected from the group consisting of (i) an organic polymer including a metal or metalloid cation, (ii) a first organometallic polymer and (iii) a second organometallic polymer including a metal or metalloid cation different from a metal in the second organometallic polymer, a plurality of particles selected from the group consisting of (a) a ceramic fuel particle and (b) a moderator particle, a dispersant, and a polymerization initiator. The pre-ceramic particle solution can be supplied to an additive manufacturing process, such as digital light projection, and made into a structure (which is pre-ceramic particle green body) that can then be debinded to form a polymer-derived ceramic sintered body. In some embodiments, the polymer-derived ceramic sintered body is a component or structure for fission reactors.
    Type: Application
    Filed: March 31, 2020
    Publication date: October 1, 2020
    Applicant: BWXT Advanced Technologies LLC
    Inventors: Benjamin D. FISHER, John R. SALASIN