Patents by Inventor John R. Sauls

John R. Sauls has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933301
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: March 19, 2024
    Assignee: TRANE INTERNATIONAL INC.
    Inventors: Dennis R. Dorman, John R. Sauls
  • Patent number: 11852145
    Abstract: Systems and methods are used to control operation of a rotary compressor of a refrigeration system to improve efficiency by varying the volume ratio and the speed of the compressor in response to current operating and load conditions. The volume of the axial and/or radial discharge ports of the compressor can be varied to provide a volume ratio corresponding to operating conditions. In addition, permanent magnet motors and/or control of rotor tip speed can be employed for further efficiency gains.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: December 26, 2023
    Assignee: Trane International, Inc.
    Inventors: Jay H. Johnson, John R. Sauls, Gordon Powell, Daniel R. Crum
  • Publication number: 20230228269
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Application
    Filed: October 31, 2022
    Publication date: July 20, 2023
    Inventors: Dennis R. Dorman, John R. Sauls
  • Patent number: 11486396
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: November 1, 2022
    Assignee: TRANE INTERNATIONAL INC.
    Inventors: Dennis R. Dorman, John R. Sauls
  • Patent number: 11351842
    Abstract: A transport refrigeration system (TRS) includes a first heat transfer circuit including a first compressor, a condenser, a first expansion device, and a cascade heat exchanger. The first compressor, the condenser, the first expansion device, and the cascade heat exchanger are in fluid communication such that a first heat transfer fluid can flow therethrough. The TRS includes a second heat transfer circuit including a second compressor, the cascade heat exchanger, a second expansion device, and an evaporator. The second compressor, the cascade heat exchanger, the second expansion device, and the evaporator are in fluid communication such that a second heat transfer fluid can flow therethrough. The first heat transfer circuit and the second heat transfer circuit are arranged in thermal communication at the cascade heat exchanger such that the first heat transfer fluid and the second heat transfer fluid are in a heat exchange relationship at the cascade heat exchanger.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: June 7, 2022
    Assignee: Thermo King Corporation
    Inventors: Stephen A. Kujak, Kenneth J. Schultz, Jeffrey B. Berge, Panayu Robert Srichai, Vladimir Sulc, Michal Kolda, John R. Sauls
  • Publication number: 20210285447
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Dennis R. Dorman, John R. Sauls
  • Patent number: 11022117
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: June 1, 2021
    Assignee: Trane International Inc.
    Inventors: Dennis M. Beekman, Daniel R. Crum, Timothy Sean Hagen, Dennis R. Dorman, John R. Sauls
  • Patent number: 10941770
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed. A method for sizing at least two variable capacity screw compressors and a refrigeration chiller incorporating a variable capacity screw compressor are separately presented.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 9, 2021
    Assignee: TRANE INTERNATIONAL INC.
    Inventors: Dennis R. Dorman, John R. Sauls
  • Publication number: 20200148038
    Abstract: A transport refrigeration system (TRS) includes a first heat transfer circuit including a first compressor, a condenser, a first expansion device, and a cascade heat exchanger. The first compressor, the condenser, the first expansion device, and the cascade heat exchanger are in fluid communication such that a first heat transfer fluid can flow therethrough. The TRS includes a second heat transfer circuit including a second compressor, the cascade heat exchanger, a second expansion device, and an evaporator. The second compressor, the cascade heat exchanger, the second expansion device, and the evaporator are in fluid communication such that a second heat transfer fluid can flow therethrough. The first heat transfer circuit and the second heat transfer circuit are arranged in thermal communication at the cascade heat exchanger such that the first heat transfer fluid and the second heat transfer fluid are in a heat exchange relationship at the cascade heat exchanger.
    Type: Application
    Filed: January 15, 2020
    Publication date: May 14, 2020
    Inventors: Stephen A. KUJAK, Kenneth J. SCHULTZ, Jeffrey B. BERGE, Panayu Robert SRICHAI, Vladimir SULC, Michal KOLDA, John R. SAULS
  • Publication number: 20200132074
    Abstract: Systems and methods are used to control operation of a rotary compressor of a refrigeration system to improve efficiency by varying the volume ratio and the speed of the compressor in response to current operating and load conditions. The volume of the axial and/or radial discharge ports of the compressor can be varied to provide a volume ratio corresponding to operating conditions. In addition, permanent magnet motors and/or control of rotor tip speed can be employed for further efficiency gains.
    Type: Application
    Filed: December 27, 2019
    Publication date: April 30, 2020
    Inventors: Jay H. Johnson, John R. Sauls, Gordon Powell, JR., Daniel R. Crum
  • Patent number: 10543737
    Abstract: A transport refrigeration system (TRS) includes a first heat transfer circuit including a first compressor, a condenser, a first expansion device, and a cascade heat exchanger. The first compressor, the condenser, the first expansion device, and the cascade heat exchanger are in fluid communication such that a first heat transfer fluid can flow therethrough. The TRS includes a second heat transfer circuit including a second compressor, the cascade heat exchanger, a second expansion device, and an evaporator. The second compressor, the cascade heat exchanger, the second expansion device, and the evaporator are in fluid communication such that a second heat transfer fluid can flow therethrough. The first heat transfer circuit and the second heat transfer circuit are arranged in thermal communication at the cascade heat exchanger such that the first heat transfer fluid and the second heat transfer fluid are in a heat exchange relationship at the cascade heat exchanger.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: January 28, 2020
    Assignee: Thermo King Corporation
    Inventors: Stephen A. Kujak, Kenneth J. Schultz, Jeffrey B. Berge, Panayu Robert Srichai, Vladimir Sulc, Michal Kolda, John R. Sauls
  • Patent number: 10533556
    Abstract: Systems and methods are used to control operation of a rotary compressor of a refrigeration system to improve efficiency by varying the volume ratio and the speed of the compressor in response to current operating and load conditions. The volume of the axial and/or radial discharge ports of the compressor can be varied to provide a volume ratio corresponding to operating conditions. In addition, permanent magnet motors and/or control of rotor tip speed can be employed for further efficiency gains.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: January 14, 2020
    Assignee: Trane International Inc.
    Inventors: Jay H. Johnson, John R. Sauls, Gordon Powell, Daniel R. Crum
  • Patent number: 10352608
    Abstract: An embodiment of method used to control operation of a screw compressor of a refrigeration system may include receiving status signals regarding operation of the screw compressor of the refrigeration system. The method may further include determining an operating point of the screw compressor based upon the received status signals, and selecting a torque profile for the screw compressor based upon the operating point. The method may also include driving the screw compressor per the selected torque profile. Refrigeration systems and compressor systems suitable for implementing the method are also presented.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: July 16, 2019
    Assignee: TRANE INTERNATIONAL INC.
    Inventors: David M. Foye, Nathan T. West, Dennis M. Beekman, John R. Sauls
  • Publication number: 20170343261
    Abstract: An embodiment of method used to control operation of a screw compressor of a refrigeration system may include receiving status signals regarding operation of the screw compressor of the refrigeration system. The method may further include determining an operating point of the screw compressor based upon the received status signals, and selecting a torque profile for the screw compressor based upon the operating point. The method may also include driving the screw compressor per the selected torque profile. Refrigeration systems and compressor systems suitable for implementing the method are also presented.
    Type: Application
    Filed: August 14, 2017
    Publication date: November 30, 2017
    Inventors: David M. FOYE, Nathan T. WEST, Dennis M. BEEKMAN, John R. SAULS
  • Patent number: 9733002
    Abstract: An embodiment of method used to control operation of a screw compressor of a refrigeration system may include receiving status signals regarding operation of the screw compressor of the refrigeration system. The method may further include determining an operating point of the screw compressor based upon the received status signals, and selecting a torque profile for the screw compressor based upon the operating point. The method may also include driving the screw compressor per the selected torque profile. Refrigeration systems and compressor systems suitable for implementing the method are also presented.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: August 15, 2017
    Assignee: TRANE INTERNATIONAL INC.
    Inventors: David M. Foye, Nathan T. West, Dennis M. Beekman, John R. Sauls
  • Publication number: 20170182869
    Abstract: A transport refrigeration system (TRS) includes a first heat transfer circuit including a first compressor, a condenser, a first expansion device, and a cascade heat exchanger. The first compressor, the condenser, the first expansion device, and the cascade heat exchanger are in fluid communication such that a first heat transfer fluid can flow therethrough. The TRS includes a second heat transfer circuit including a second compressor, the cascade heat exchanger, a second expansion device, and an evaporator. The second compressor, the cascade heat exchanger, the second expansion device, and the evaporator are in fluid communication such that a second heat transfer fluid can flow therethrough. The first heat transfer circuit and the second heat transfer circuit are arranged in thermal communication at the cascade heat exchanger such that the first heat transfer fluid and the second heat transfer fluid are in a heat exchange relationship at the cascade heat exchanger.
    Type: Application
    Filed: December 28, 2016
    Publication date: June 29, 2017
    Inventors: Stephen A. KUJAK, Kenneth J. SCHULTZ, Jeffrey B. BERGE, Panayu Robert SRICHAI, Vladimir SULC, Michal KOLDA, John R. SAULS
  • Publication number: 20150093273
    Abstract: Systems and methods are used to control operation of a rotary compressor of a refrigeration system to improve efficiency by varying the volume ratio and the speed of the compressor in response to current operating and load conditions. The volume of the axial and/or radial discharge ports of the compressor can be varied to provide a volume ratio corresponding to operating conditions. In addition, permanent magnet motors and/or control of rotor tip speed can be employed for further efficiency gains.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventors: Jay H. Johnson, John R. Sauls, Gordon Powell, Daniel R. Crum
  • Publication number: 20150052921
    Abstract: An embodiment of method used to control operation of a screw compressor of a refrigeration system may include receiving status signals regarding operation of the screw compressor of the refrigeration system. The method may further include determining an operating point of the screw compressor based upon the received status signals, and selecting a torque profile for the screw compressor based upon the operating point. The method may also include driving the screw compressor per the selected torque profile. Refrigeration systems and compressor systems suitable for implementing the method are also presented.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Inventors: David M. Foye, Nathan T. West, Dennis M. Beekman, John R. Sauls
  • Publication number: 20150030490
    Abstract: An improved bearing housing of a rotary screw compressor is described. The bearing housing is generally shorter than a convention bearing housing. The bearing housing can be configured to enclose and support radial bearings of the screw compressor. The bearing housing can be configured not to enclose axial bearings of the screw compressor in an axial direction.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventors: Dennis M. Beekman, Daniel R. Crum, Timothy Sean Hagen, Dennis R. Dorman, John R. Sauls
  • Publication number: 20150030489
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventors: Dennis M. Beekman, Daniel R. Crum, Timothy Sean Hagen, Dennis R. Dorman, John R. Sauls