Patents by Inventor John S. Godsmark

John S. Godsmark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8921590
    Abstract: The startup of a tubular reactor containing fresh or regenerated molecular sieve catalyst and cooled by steam generation on the shell side, as part of an olefin oligomerization process, is improved by, during the startup phase of the reactor, controlling the pressure on the shell side of the reactor at maximum 10 barg. The startup may be further improved by controlling the inlet temperature of the hydrocarbon startup stream to the reactor, by controlling the flow of reactant olefins to the reactor, or by controlling the nature and/or concentration of the olefins in the reactor feed.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: December 30, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul Hamilton, John S. Godsmark, David E. Heather
  • Patent number: 8742192
    Abstract: The conversion and run length for oligomerization of olefins over a molecular sieve catalyst in a tubular reactor is improved by controlling the peak temperature to not exceed 50 degrees C. above the temperature of the temperature control fluid exiting the shell side outlet of the reactor. A tubular reactor containing molecular sieve catalyst is provided with a multipoint thermocouple in at least one tube, and optionally with a bottom design adapted for fast unloading of the molecular sieve catalyst from the tubular reactor.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: June 3, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Godsmark, Raphael F. Caers, Jihad M. Dakka, Hans K. T. Goris, Marc P. H. Puttemans, Stephen H. Brown, Georges M. K. Mathys, Paul Hamilton
  • Patent number: 8481796
    Abstract: A hydrocarbon composition that comprises species of at least 3 different carbon numbers, at least about 95 wt % non-normal hydrocarbons, no greater than 1000 wppm aromatics, no greater than 10 wt % naphthenes, and also has a certain boiling point range; and a process for making the hydrocarbon composition.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: July 9, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Stephen Harold Brown, An Amandine Verberckmoes, Steven E. Silverberg, Marc P. Puttemans, Mark R. Welford, John S. Godsmark
  • Publication number: 20120283465
    Abstract: The startup of a tubular reactor containing fresh or regenerated molecular sieve catalyst and cooled by steam generation on the shell side, as part of an olefin oligomerisation process, is improved by, during the startup phase of the reactor, controlling the pressure on the shell side of the reactor at maximum 10 barg. The startup may be further improved by controlling the inlet temperature of the hydrocarbon startup stream to the reactor, by controlling the flow of reactant olefins to the reactor, or by controlling the nature and/or concentration of the olefins in the reactor feed.
    Type: Application
    Filed: November 23, 2010
    Publication date: November 8, 2012
    Inventors: Paul Hamilton, John S. Godsmark, David E. Heather
  • Publication number: 20120116141
    Abstract: The conversion and run length for oligomerisation of olefins over a molecular sieve catalyst in a tubular reactor is improved by controlling the peak temperature to not exceed 50 degrees C. above the temperature of the temperature control fluid exiting the shell side outlet of the reactor. A tubular reactor containing molecular sieve catalyst is provided with a multipoint thermocouple in at least one tube, and optionally with a bottom design adapted for fast unloading of the molecular sieve catalyst from the tubular reactor.
    Type: Application
    Filed: June 16, 2006
    Publication date: May 10, 2012
    Inventors: John S. Godsmark, Raphael Caers, Jihad M. Dakka, Hans K.T. Goris, Marc P.H. Puttemans, Stephen H. Brown, Georges M.K. Mathys, Paul Hamilton
  • Patent number: 7880046
    Abstract: Water reacts on molecular sieve catalysts used in oligomerization reactions and forms oxygenated compounds, in particular organic acids that may cause corrosion problems downstream of the reactor, in particular in distillation tower overhead systems and downstream thereof. A lowering of the presence of water in the feed prior to contacting thereof with the molecular sieve brings a significant reduction in corrosion downstream. At the same time, it has a significant beneficial effect on catalyst activity and brings a significant extension of catalyst life. Lowering water in the feed is particularly effective when organic nitrogen-containing Lewis bases are present in the feed, even at low levels.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: February 1, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Godsmark, Georges M. K. Mathys, Hubertus J. Beckers, Raphael F. Caers, Roger Eijkhoudt, Stephen H. Brown
  • Publication number: 20080312484
    Abstract: Water reacts on molecular sieve catalysts used in oligomerisation reactions and forms oxygenated compounds, in particular organic acids that may cause corrosion problems downstream of the reactor, in particular in distillation tower overhead systems and downstream thereof. A lowering of the presence of water in the feed prior to contacting thereof with the molecular sieve brings a significant reduction in corrosion downstream. At the same time, it has a significant beneficial effect on catalyst activity and brings a significant extension of catalyst life. Lowering water in the feed is particularly effective when organic nitrogen-containing Lewis bases are present in the feed, even at low levels.
    Type: Application
    Filed: June 16, 2006
    Publication date: December 18, 2008
    Inventors: John S. Godsmark, Georges M.K. Mathys, Hubertus J. Beckers, Raphael F. Caers, Roger Eijkhoudt, Stephen H. Brown