Patents by Inventor John S. Laudo

John S. Laudo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11002752
    Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a cooling, heating and fan arrangement for maintaining a predetermined optimum temperature of the samples during testing; a visual, circumferential and axial alignment system for aligning the samples within the carousel; a transfer system for transferring the samples from the carousel to the centrifuge; a balancing system of minimizing the rotational vibrations of the centrifuge; a safety system and anti-tipping design for the sample containing system; liquid dispensing arms for dispensing the buffered saline solution; and discharge ports for discharging and disposing of the liquid removed from the samples to a location external of the system.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: May 11, 2021
    Assignees: POCARED Diagnostics LTD., Battelle Memorial Institute
    Inventors: Gal Ingber, William G. Atterbury, Dave Holley, Thomas A. Klausing, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico
  • Publication number: 20200400576
    Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optical cup or cuvette having a tapered surface; an optics system including an optical reader and a thermal controller; an optical analyzer; a cooling system; and an improved spectrometer. The system may utilize the disposable cartridge in the sample processor and the optical cup or cuvette in the optical analyzer.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Inventors: Gal Ingber, William G. Atterbury, Dave Holley, Thomas A. Klausing, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico
  • Patent number: 10801962
    Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optical cup or cuvette having a tapered surface; an optics system including an optical reader and a thermal controller; an optical analyzer; a cooling system; and an improved spectrometer. The system may utilize the disposable cartridge in the sample processor and the optical cup or cuvette in the optical analyzer.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: October 13, 2020
    Assignee: POCARED Diagnostics LTD.
    Inventors: Gal Ingber, William G. Atterbury, Dave Holley, Thomas A. Klausing, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico
  • Publication number: 20200240977
    Abstract: A system for conducting the identification and quantification of micro-organisms, e.g., bacteria in urine samples which includes: 1) several disposable cartridges for holding four disposable components including a centrifuge tube, a pipette tip having a 1 ml volume, a second pipette tip having a 0.5 ml volume, and an optical cup or cuvette; 2) a sample processor for receiving the disposable cartridges and processing the urine samples including transferring the processed urine sample to the optical cups; and 3) an optical analyzer for receiving the disposable cartridges and configured to analyze the type and quantity of micro-organisms in the urine sample. The disposable cartridges with their components including the optical cups or cuvettes are used in the sample processor, and the optical cups or cuvettes containing the processed urine samples are used in the optical analyzer for identifying and quantifying the type of micro-organism existing in the processed urine samples.
    Type: Application
    Filed: April 7, 2020
    Publication date: July 30, 2020
    Inventors: Gal Ingber, William G. Atterbury, Russell H. Barnes, Douglas E. Boyd, Joseph D. Dennis, Jonathan Gurfinkel, Dave Holley, Steven E. Huckaby, Thomas A. Klausing, John S. Laudo, Kevin Sadeski, Jason A. Schaefer, K. Bryan Scott, Carol Stillman, Sherwood Talbert, John Tallarico
  • Patent number: 10656140
    Abstract: A system for conducting the identification and quantification of micro-organisms, e.g., bacteria in urine samples which includes: 1) several disposable cartridges for holding four disposable components including a centrifuge tube, a pipette tip having a 1 ml volume, a second pipette tip having a 0.5 ml volume, and an optical cup or cuvette; 2) a sample processor for receiving the disposable cartridges and processing the urine samples including transferring the processed urine sample to the optical cups; and 3) an optical analyzer for receiving the disposable cartridges and configured to analyze the type and quantity of micro-organisms in the urine sample. The disposable cartridges with their components including the optical cups or cuvettes are used in the sample processor, and the optical cups or cuvettes containing the processed urine samples are used in the optical analyzer for identifying and quantifying the type of micro-organism existing in the processed urine samples.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: May 19, 2020
    Assignee: POCARED Diagnostics LTD.
    Inventors: Gal Ingber, William G. Atterbury, Russell H. Barnes, Douglas E. Boyd, Joseph D. Dennis, Jonathan Gurfinkel, Dave Holley, Steven E. Huckaby, Thomas A. Klausing, John S. Laudo, Kevin Sadeski, Jason A. Schaefer, K. Bryan Scott, Carol Stillman, Sherwood Talbert, John Tallarico
  • Publication number: 20190285661
    Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a cooling, heating and fan arrangement for maintaining a predetermined optimum temperature of the samples during testing; a visual, circumferential and axial alignment system for aligning the samples within the carousel; a transfer system for transferring the samples from the carousel to the centrifuge; a balancing system of minimizing the rotational vibrations of the centrifuge; a safety system and anti-tipping design for the sample containing system; liquid dispensing arms for dispensing the buffered saline solution; and discharge ports for discharging and disposing of the liquid removed from the samples to a location external of the system.
    Type: Application
    Filed: March 22, 2019
    Publication date: September 19, 2019
    Inventors: Gal Ingber, William G. Atterbury, Dave Holley, Thomas A. Klausing, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico
  • Patent number: 10288632
    Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a cooling, heating and fan arrangement for maintaining a predetermined optimum temperature of the samples during testing; a visual, circumferential and axial alignment system for aligning the samples within the carousel; a transfer system for transferring the samples from the carousel to the centrifuge; a balancing system of minimizing the rotational vibrations of the centrifuge; a safety system and anti-tipping design for the sample containing system; liquid dispensing arms for dispensing the buffered saline solution; and discharge ports for discharging and disposing of the liquid removed from the samples to a location external of the system.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: May 14, 2019
    Assignee: POCARED DIAGNOSTICS LTD.
    Inventors: Gal Ingber, William G. Atterbury, Dave Holley, Thomas A. Klausing, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico
  • Patent number: 10254562
    Abstract: Methods and devices for altering the power of a lens, such as an intraocular lens, are disclosed. In one method, the lens comprises a single polymer matrix containing crosslinkable pendant groups, wherein the polymer matrix increases in volume when crosslinked. The lens does not contain free monomer. Upon exposure to ultraviolet radiation, crosslinking causes the exposed portion of the lens to increase in volume, causing an increase in the refractive index. In another method, the lens comprises a polymer matrix containing photobleachable chromophores. Upon exposure to ultraviolet radiation, photobleaching causes a decrease in refractive index in the exposed portion without any change in lens thickness. These methods avoid the need to wait for diffusion to occur to change the lens shape and avoid the need for a second exposure to radiation to lock in the changes to the lens.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: April 9, 2019
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Herbert S. Bresler, Erik Edwards, Amy M. Heintz, John S. Laudo, Alexander C. Morrow, Steven M. Risser
  • Publication number: 20180348135
    Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optical cup or cuvette having a tapered surface; an optics system including an optical reader and a thermal controller; an optical analyzer; a cooling system; and an improved spectrometer. The system may utilize the disposable cartridge in the sample processor and the optical cup or cuvette in the optical analyzer.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 6, 2018
    Inventors: Gal Ingber, William G. Atterbury, Dave Holley, Thomas A. Klausing, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico
  • Patent number: 10073036
    Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optical cup or cuvette having a tapered surface; an optics system including an optical reader and a thermal controller; an optical analyzer; a cooling system; and an improved spectrometer. The system may utilize the disposable cartridge in the sample processor and the optical cup or cuvette in the optical analyzer.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: September 11, 2018
    Assignee: POCARED Diagnostics LTD.
    Inventors: Gal Ingber, William G. Atterbury, Dave Holley, Thomas A. Klausing, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico
  • Publication number: 20170146515
    Abstract: A system for conducting the identification and quantification of micro-organisms, e.g., bacteria in urine samples which includes: 1) several disposable cartridges for holding four disposable components including a centrifuge tube, a pipette tip having a 1 ml volume, a second pipette tip having a 0.5 ml volume, and an optical cup or cuvette; 2) a sample processor for receiving the disposable cartridges and processing the urine samples including transferring the processed urine sample to the optical cups; and 3) an optical analyzer for receiving the disposable cartridges and configured to analyze the type and quantity of micro-organisms in the urine sample. The disposable cartridges with their components including the optical cups or cuvettes are used in the sample processor, and the optical cups or cuvettes containing the processed urine samples are used in the optical analyzer for identifying and quantifying the type of micro-organism existing in the processed urine samples.
    Type: Application
    Filed: February 6, 2017
    Publication date: May 25, 2017
    Inventors: Gal Ingber, William G. Atterbury, Russell H. Barnes, Douglas E. Boyd, Joseph D. Dennis, Jonathan Gurfinkel, Dave Holley, Steven E. Huckaby, Thomas A. Klausing, John S. Laudo, Kevin Sadeski, Jason A. Schaefer, K. Bryan Scott, Carol Stillman, Sherwood Talbert, John Tallarico
  • Patent number: 9606105
    Abstract: A system for conducting the identification and quantification of micro-organisms, e.g., bacteria in urine samples which includes: 1) several disposable cartridges for holding four disposable components including a centrifuge tube, a pipette tip having a 1 ml volume, a second pipette tip having a 0.5 ml volume, and an optical cup or cuvette; 2) a sample processor for receiving the disposable cartridges and processing the urine samples including transferring the processed urine sample to the optical cups; and 3) an optical analyzer for receiving the disposable cartridges and configured to analyze the type and quantity of micro-organisms in the urine sample. The disposable cartridges with their components including the optical cups or cuvettes are used in the sample processor, and the optical cups or cuvettes containing the processed urine samples are used in the optical analyzer for identifying and quantifying the type of micro-organism existing in the processed urine samples.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: March 28, 2017
    Assignee: POCARED DIAGNOSTICS LTD.
    Inventors: Gal Ingber, William G. Atterbury, Russell H. Barnes, Douglas E. Boyd, Joseph D. Dennis, Jonathan Gurfinkel, Dave Holley, Steven E. Huckaby, Thomas A. Klausing, Kevin Sadeski, Jason A. Schaefer, K. Bryan Scott, Carol Stillman, Sherwood Talbert, John Tallarico, John S. Laudo
  • Publication number: 20170074798
    Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optical cup or cuvette having a tapered surface; an optics system including an optical reader and a thermal controller; an optical analyzer; a cooling system; and an improved spectrometer. The system may utilize the disposable cartridge in the sample processor and the optical cup or cuvette in the optical analyzer.
    Type: Application
    Filed: November 2, 2016
    Publication date: March 16, 2017
    Inventors: Gal Ingber, William G. Atterbury, Dave Holley, Thomas A. Klausing, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico
  • Patent number: 9506866
    Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optical cup or cuvette having a tapered surface; an optics system including an optical reader and a thermal controller; an optical analyzer; a cooling system; and an improved spectrometer. The system may utilize the disposable cartridge in the sample processor and the optical cup or cuvette in the optical analyzer.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: November 29, 2016
    Assignee: POCARED Diagnostics LTD.
    Inventors: Gal Ingber, William G. Atterbury, Dave Holley, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico, Thomas A. Klausing
  • Publication number: 20160221281
    Abstract: A method of adjusting the optical power of a lens includes individually exposing an interior volume within the lens to radiation to form at least one interior surface within the lens. The at least one interior surface alters the refractive index of the lens, thereby adjusting the power of the lens.
    Type: Application
    Filed: September 10, 2014
    Publication date: August 4, 2016
    Inventor: John S. Laudo
  • Publication number: 20160221283
    Abstract: Methods and devices for altering the power of a lens, such as an intraocular lens, are disclosed. In one method, the lens comprises a single polymer matrix containing crosslinkable pendant groups, wherein the polymer matrix increases in volume when crosslinked. The lens does not contain free monomer. Upon exposure to ultraviolet radiation, crosslinking causes the exposed portion of the lens to increase in volume, causing an increase in the refractive index. In another method, the lens comprises a polymer matrix containing photobleachable chromophores. Upon exposure to ultraviolet radiation, photobleaching causes a decrease in refractive index in the exposed portion without any change in lens thickness. These methods avoid the need to wait for diffusion to occur to change the lens shape and avoid the need for a second exposure to radiation to lock in the changes to the lens.
    Type: Application
    Filed: September 10, 2014
    Publication date: August 4, 2016
    Inventors: Herbert S. Bresler, Erik Edwards, Amy M. Heintz, John S. Laudo, Alexander C. Morrow, Steven M. Risser
  • Publication number: 20160195735
    Abstract: Methods and devices for altering the power of a lens, such as an intraocular lens, are disclosed. In one method, the lens comprises a single polymer matrix containing crosslinkable pendant groups, wherein the polymer matrix increases in volume when crosslinked. The lens does not contain free monomer. Upon exposure to ultraviolet radiation, crosslinking causes the exposed portion of the lens to increase in volume, causing an increase in the refractive index. In another method, the lens comprises a polymer matrix containing photobleachable chromophores. Upon exposure to ultraviolet radiation, photobleaching causes a decrease in refractive index in the exposed portion without any change in lens thickness. These methods avoid the need to wait for diffusion to occur to change the lens shape and avoid the need for a second exposure to radiation to lock in the changes to the lens.
    Type: Application
    Filed: March 11, 2016
    Publication date: July 7, 2016
    Inventors: Herbert S. Bresler, Erik Edwards, Amy M. Heintz, John S. Laudo, Alexander C. Morrow, Steven M. Risser
  • Publication number: 20150268158
    Abstract: A gas sensor for sensing a presence of ethanol vapor in a cabin includes a source of infrared radiation, a first detector configured to receive infrared radiation from the source in a first region of the electromagnetic spectrum and a second detector for detecting a parameter, such as an amount of radiation received from the source in a second region of the electromagnetic spectrum, a temperature of the source and/or an amount of a second gas present in the cabin, affecting the amount of infrared radiation detected by the first detector. With this data, the presence of ethanol vapor in a cabin is established by an output of the gas sensor based on signals from both the first and second detectors.
    Type: Application
    Filed: March 18, 2015
    Publication date: September 24, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventor: John S. Laudo
  • Patent number: 8969705
    Abstract: The invention describes a novel thermoelectric composite material containing electrically conductive polymeric fibrils in a polymer matrix with a high thermoelectric coefficient. The invention also includes a thermoelectric device using the composite. The invention also includes a thermoelectric device containing a thermoelectric layers and a thermoelectric device in which a thermal barrier isolates a thermoelectric layer from a structurally supporting substrate. The thermoelectric devices can be used to generate electricity or to control temperature.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: March 3, 2015
    Assignee: Battelle Memorial Institute
    Inventor: John S. Laudo
  • Publication number: 20150010993
    Abstract: A system for conducting the identification and quantification of micro-organisms, e.g., bacteria in urine samples which includes: 1) several disposable cartridges for holding four disposable components including a centrifuge tube, a pipette tip having a 1 ml volume, a second pipette tip having a 0.5 ml volume, and an optical cup or cuvette; 2) a sample processor for receiving the disposable cartridges and processing the urine samples including transferring the processed urine sample to the optical cups; and 3) an optical analyzer for receiving the disposable cartridges and configured to analyze the type and quantity of micro-organisms in the urine sample. The disposable cartridges with their components including the optical cups or cuvettes are used in the sample processor, and the optical cups or cuvettes containing the processed urine samples are used in the optical analyzer for identifying and quantifying the type of micro-organism existing in the processed urine samples.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 8, 2015
    Inventors: Gal Ingber, William G. Atterbury, Russell H. Barnes, Douglas E. Boyd, Joseph D. Dennis, Jonathan Gurfinkel, Dave Holley, Steven E. Huckaby, Thomas A. Klausing, Kevin Sadeski, Jason A. Schaefer, K. Bryan Scott, Carol Stillman, Sherwood Talbert, John Tallarico, John S. Laudo