Patents by Inventor John S. Mangan

John S. Mangan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080192546
    Abstract: A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data.
    Type: Application
    Filed: April 2, 2008
    Publication date: August 14, 2008
    Inventors: Kevin M. Conley, John S. Mangan, Jeffrey G. Craig
  • Patent number: 7362613
    Abstract: A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: April 22, 2008
    Assignee: Sandisk Corporation
    Inventors: Kevin M. Conley, John S. Mangan, Jeffrey G. Craig
  • Patent number: 7246268
    Abstract: Methods and apparatus for automatically detecting when a memory system has significantly degraded are disclosed. According to one aspect of the present invention, a method for determining a status associated with a memory system which includes a plurality of sectors includes updating a counter, comparing the counter to a threshold value, and generating an appropriate indication when comparing the counter to the threshold value yields a first result. The counter is updated each time a sector is reassigned, and indicates a number of sectors remaining in the memory system. The threshold value indicates a number of sectors which are yet to be reassigned in order for the memory system to be considered as useable, or reliable. The indication is generated when comparing the counter to the threshold value yields a first result to indicate that the memory system is substantially near a failure condition.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: July 17, 2007
    Assignee: SanDisk Corporation
    Inventors: Jeffrey Craig, John S. Mangan
  • Patent number: 7184306
    Abstract: A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: February 27, 2007
    Assignee: SanDisk Corporation
    Inventors: Kevin M. Conley, John S. Mangan, Jeffrey G. Craig
  • Patent number: 6996008
    Abstract: A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: February 7, 2006
    Assignee: SanDisk Corporation
    Inventors: Kevin M. Conley, John S. Mangan, Jeffrey G. Craig
  • Patent number: 6888752
    Abstract: In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: May 3, 2005
    Assignee: SanDisk Corporation
    Inventors: John S. Mangan, Daniel C. Guterman, George Samachisa, Brian Murphy, Chi-Ming Wang, Khandker N. Quader
  • Publication number: 20040237010
    Abstract: Soft errors occur during normal use of a solid-state memory such as EEPROM or Flash EEPROM. A soft error results from the programmed threshold voltage of a memory cell being drifted from its originally intended level. The error is initially not readily detected during normal read until the cumulative drift becomes so severe that it develops into a hard error. Data could be lost if enough of these hard errors swamps available error correction codes in the memory. A memory device and techniques therefor are capable of detecting these drifts and substantially maintaining the threshold voltage of each memory cell to its intended level throughout the use of the memory device, thereby resisting the development of soft errors into hard errors.
    Type: Application
    Filed: June 22, 2004
    Publication date: November 25, 2004
    Inventors: Daniel L. Auclair, Jeffrey Craig, John S. Mangan, Robert D. Norman, Daniel C. Guterman, Sanjay Mehrotra
  • Publication number: 20040210709
    Abstract: A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data.
    Type: Application
    Filed: May 6, 2004
    Publication date: October 21, 2004
    Inventors: Kevin M. Conley, John S. Mangan, Jeffrey G. Craig
  • Patent number: 6760255
    Abstract: A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: July 6, 2004
    Assignee: SanDisk Corporation
    Inventors: Kevin M. Conley, John S. Mangan, Jeffrey G. Craig
  • Patent number: 6717851
    Abstract: In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: April 6, 2004
    Assignee: SanDisk Corporation
    Inventors: John S. Mangan, Daniel C. Guterman, George Samachisa, Brian Murphy, Chi-Ming Wang, Khandker N. Quader
  • Publication number: 20040027865
    Abstract: In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these.
    Type: Application
    Filed: July 1, 2003
    Publication date: February 12, 2004
    Inventors: John S. Mangan, Daniel C. Guterman, George Samachisa, Brian Murphy, Chi-Ming Wang, Khandker N. Quader
  • Publication number: 20030206441
    Abstract: A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data.
    Type: Application
    Filed: April 23, 2003
    Publication date: November 6, 2003
    Inventors: Kevin M. Conley, John S. Mangan, Jeffrey G. Craig
  • Publication number: 20030135793
    Abstract: Methods and apparatus for automatically detecting when a memory system has significantly degraded are disclosed. According to one aspect of the present invention, a method for determining a status associated with a memory system which includes a plurality of sectors includes updating a counter, comparing the counter to a threshold value, and generating an appropriate indication when comparing the counter to the threshold value yields a first result. The counter is updated each time a sector is reassigned, and indicates a number of sectors remaining in the memory system. The threshold value indicates a number of sectors which are yet to be reassigned in order for the memory system to be considered as useable, or reliable. The indication is generated when comparing the counter to the threshold value yields a first result to indicate that the memory system is substantially near a failure condition.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 17, 2003
    Applicant: SanDisk Corporation
    Inventors: Jeffrey Craig, John S. Mangan
  • Patent number: 6580638
    Abstract: A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: June 17, 2003
    Assignee: SanDisk Corporation
    Inventors: Kevin M. Conley, John S. Mangan, Jeffrey G. Craig
  • Patent number: 6570785
    Abstract: In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: May 27, 2003
    Assignee: SanDisk Corporation
    Inventors: John S. Mangan, Daniel C. Guterman, George Samachisa, Brian Murphy, Chi-Ming Wang
  • Publication number: 20020154543
    Abstract: A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data.
    Type: Application
    Filed: June 21, 2002
    Publication date: October 24, 2002
    Inventors: Kevin M. Conley, John S. Mangan, Jeffrey G. Craig
  • Patent number: 6426893
    Abstract: A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: July 30, 2002
    Assignee: Sandisk Corporation
    Inventors: Kevin M. Conley, John S. Mangan, Jeffrey G. Craig
  • Publication number: 20020051383
    Abstract: In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these.
    Type: Application
    Filed: January 10, 2001
    Publication date: May 2, 2002
    Inventors: John S. Mangan, Daniel C. Guterman, George Samachisa, Brian Murphy, Chi-Ming Wang, Khandker N. Quader
  • Patent number: 6049899
    Abstract: Soft errors occur during normal use of a solid-state memory such as EEPROM or Flash EEPROM. A soft error results from the programmed threshold voltage of a memory cell being drifted from its originally intended level. The error is initially not readily detected during normal read until the cumulative drift becomes so severe that it develops into a hard error. Data could be lost if enough of these hard errors swamps available error correction codes in the memory. A memory device and techniques therefor are capable of detecting these drifts and substantially maintaining the threshold voltage of each memory cell to its intended level throughout the use of the memory device, thereby resisting the development of soft errors into hard errors.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: April 11, 2000
    Assignee: Zilog, Inc.
    Inventors: Daniel L. Auclair, Jeffrey Craig, John S. Mangan, Robert D. Norman, Daniel C. Guterman, Sanjay Mehrotra
  • Patent number: 5657332
    Abstract: Soft errors occur during normal use of a solid-state memory such as EEPROM or Flash EEPROM. A soft error results from the programmed threshold voltage of a memory cell being drifted from its originally intended level. The error is initially not readily detected during normal read until the cumulative drift becomes so severe that it develops into a hard error. Data could be lost if enough of these hard errors swamps available error correction codes in the memory. A memory device and techniques therefor are capable of detecting these drifts and substantially maintaining the threshold voltage of each memory cell to its intended level throughout the use of the memory device, thereby resisting the development of soft errors into hard errors.
    Type: Grant
    Filed: March 20, 1995
    Date of Patent: August 12, 1997
    Assignee: SanDisk Corporation
    Inventors: Daniel L. Auclair, Jeffrey Craig, John S. Mangan, Robert D. Norman, Daniel C. Guterman, Sanjay Mehrotra