Patents by Inventor John Setel O'Donnell

John Setel O'Donnell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11566541
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: January 31, 2023
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11536163
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: December 27, 2022
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11530626
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: December 20, 2022
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11530625
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: December 20, 2022
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220341349
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: October 27, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220282638
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: September 8, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220268180
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220268181
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220268179
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220259986
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 18, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220259987
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 18, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220259988
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 18, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11391181
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: July 19, 2022
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220220867
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: July 14, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220213811
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: July 7, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220170388
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: June 2, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220170387
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: June 2, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220170386
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: November 29, 2021
    Publication date: June 2, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20200185586
    Abstract: Systems and methods for selectively producing steam from solar collectors and heaters, for processes including enhanced oil recovery, are disclosed herein. A system in accordance with a particular embodiment includes a water source, a solar collector that includes a collector inlet, a collector outlet, and a plurality of solar concentrators positioned to heat water passing from the collector inlet to the collector outlet, a fuel-fired heater, a steam outlet connected to an oil field injection well, and a water flow network coupled among the water source, the solar collector, the heater, and the steam outlet.
    Type: Application
    Filed: July 19, 2019
    Publication date: June 11, 2020
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Andras Nady, Stuart M. Heisler
  • Publication number: 20200124273
    Abstract: Separators and mixers for delivering controlled-quality solar-generated steam over long distances for enhanced oil recovery, and associated systems and methods. A representative method includes heating water to steam at a solar field, separating a liquid fraction from the steam, directing the steam toward a target steam user via a first, steam conduit, and directing the liquid fraction toward the target steam user in parallel with the steam via second, liquid fraction conduit. The method can further include mixing the liquid fraction and the steam before delivering the combined liquid fraction and steam to the target user.
    Type: Application
    Filed: June 5, 2019
    Publication date: April 23, 2020
    Inventors: Manish Chandra, John Setel O'Donnell