Patents by Inventor John Stairmand

John Stairmand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060076127
    Abstract: A catalytic reactor (40) comprises a plurality of sheets (42) defining flow channels (44) between them. Within each flow channel (44) is a foil (46) of corrugated material whose surfaces are coated with catalytic material apart from where they contact the sheets (44). At each end of the reactor (40) are headers to supply gas mixtures to the flow channels (44), the headers communicating with adjacent channels being separate. The reactor (40) enables different gas mixtures to be supplied to adjacent channels (44), which may be at different pressures, and the corresponding chemical reactions are also different. Where one of the reactions is endothermic while the other reaction is exothermic, heat is transferred through the sheets (42) separating the adjacent channels (44), from the exothermic reaction to the endothermic reaction.
    Type: Application
    Filed: July 9, 2002
    Publication date: April 13, 2006
    Inventors: Michael Bowe, David Segal, Clive Lee-Tuffnell, David Blaikley, Jason Maude, John Stairmand, Ian Zimmerman
  • Publication number: 20050173009
    Abstract: A valve system (10) controls the fluid flow between an inlet (12) and an outlet (14). The system (10) splits the flow into two parallel flow ducts (15, 16) and recombines the flows through opposed tangential inlets (18) and (19) of a fluidic vortex valve (20) which has an axial outlet (22). An adjustable valve (24) controls the flow through one of the parallel flow ducts (15), controlling the strength of the vortex generated within the vortex valve (20). Hence a small valve (24) can control and adjust the flows in both ducts (15 and 16).
    Type: Application
    Filed: May 13, 2003
    Publication date: August 11, 2005
    Inventors: Michael Bowe, John Stairmand, Richard Mills
  • Publication number: 20050171217
    Abstract: Methane is reacted with steam, to generate carbon monoxide and hydrogen in a first catalytic reactor (14); the resulting gas mixture can then be used to perform Fisher-Tropsch synthesis in a second catalytic reactor (26). In performing the steam/methane reforming, the gas mixture is passed through a narrow channel in which the mean temperature and exit temperature are both in the range 750° C. to 900° C., the residence time being less than 0.5 second, and the channel containing a catalyst, so that only those reactions that have comparatively rapid kinetics will occur. The heat is provided by combustion of methane in adjacent channels (17). The ratio of steam to methane should preferably be 1.4 to 1.6, for example about 1.5. Almost all the methane will undergo the reforming reaction, almost entirely forming carbon monoxide. After performing Fischer-Tropsch synthesis, the remaining hydrogen is preferably fed back (34) to the combustion channels (17).
    Type: Application
    Filed: December 2, 2002
    Publication date: August 4, 2005
    Inventors: Michael Bowe, John Stairmand, Jason Maude, Clive Lee-Tuffnell, Ian Zimmerman