Patents by Inventor John Stiggelbout

John Stiggelbout has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220000622
    Abstract: Embodiments described herein include devices, systems, and methods for reducing the distance between two locations in tissue. In one embodiment, an anchor may reside within the right ventricle in engagement with the septum. A tension member may extend from that anchor through the septum and an exterior wall of the left ventricle to a second anchor disposed along a surface of the heart. Perforating the exterior wall and the septum from an epicardial approach can provide control over the reshaping of the ventricular chamber. Guiding deployment of the implant from along the epicardial access path and another access path into and through the right ventricle provides control over the movement of the anchor within the ventricle. The joined epicardial pathway and right atrial pathway allows the tension member to be advanced into the heart through the right atrium and pulled into engagement along the epicardial access path.
    Type: Application
    Filed: June 17, 2021
    Publication date: January 6, 2022
    Applicant: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, Murray Sheldon, Ernie Heflin, Andrew Wechsler, John Stiggelbout, Rovil Arcia, John Bower
  • Publication number: 20210267579
    Abstract: A system and associated method for manipulating tissues and anatomical or other structures in medical applications for the purpose of treating diseases or disorders or other purposes. In one aspect, the system includes a delivery device configured to deploy and implant anchor devices for such purposes.
    Type: Application
    Filed: February 17, 2021
    Publication date: September 2, 2021
    Applicant: NeoTract, Inc.
    Inventors: Ling-Kang Tong, Joseph Catanese, III, Floria Cheng, Jolene Cutts, Daniel Merrick, Theodore C. Lamson, Kristin Taylor, Earl A. Bright, II, Michael Gearhart, Matthew McLean, James Niederjohn, Brian Y. Tachibana, Andrew L. Johnston, John Stiggelbout
  • Patent number: 11051942
    Abstract: Embodiments described herein include devices, systems, and methods for reducing the distance between two locations in tissue. In one embodiment, an anchor may reside within the right ventricle in engagement with the septum. A tension member may extend from that anchor through the septum and an exterior wall of the left ventricle to a second anchor disposed along a surface of the heart. Perforating the exterior wall and the septum from an epicardial approach can provide control over the reshaping of the ventricular chamber. Guiding deployment of the implant from along the epicardial access path and another access path into and through the right ventricle provides control over the movement of the anchor within the ventricle. The joined epicardial pathway and right atrial pathway allows the tension member to be advanced into the heart through the right atrium and pulled into engagement along the epicardial access path.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: July 6, 2021
    Assignee: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, Murray Sheldon, Ernie Heflin, Andrew Wechsler, John Stiggelbout, Rovil Arcia, John Bower
  • Patent number: 10986982
    Abstract: The invention encompasses devices and methods used to keep the objective lens of a viewing or illuminating device, specifically an endoscope, free from obstructive fluid and dirt; specifically a device having a hollow body designed to fit over an endoscope, a transparent lens cover film that is retained within the device and that is threaded in front of the objective lens of an endoscope, thereby maintaining a clear and unobstructed transparent window in front of the endoscope lens, and an endcap configured to engage opposing edges of the lens cover film in a sealing manner.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: April 27, 2021
    Assignee: Medeon Biodesign, Inc.
    Inventors: I-Ching Wu, Thomas Hsu, Senzen Hsu, John Stiggelbout, Torrey Smith, Hungwen Wei, Mengjhe Sie
  • Patent number: 10925587
    Abstract: A system and associated method for manipulating tissues and anatomical or other structures in medical applications for the purpose of treating diseases or disorders or other purposes. In one aspect, the system includes a delivery device configured to deploy and implant anchor devices for such purposes.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: February 23, 2021
    Assignee: NeoTract, Inc.
    Inventors: Ling-Kang Tong, Joseph Catanese, III, Floria Cheng, Jolene Cutts, Daniel Merrick, Theodore C. Lamson, Kristin Taylor, Earl A. Bright, II, Michael Gearhart, Matthew McLean, James Niederjohn, Brian Y. Tachibana, Andrew L. Johnston, John Stiggelbout
  • Patent number: 10702261
    Abstract: An anchor delivery system configured for single patient, multiple use applications. The system includes reloading linkages which cooperate with needle, suture and anchor subassemblies and devices. Reloading actions accomplish the acceptance of a subsequent anchor cartridge and the readying of delivery structure.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: July 7, 2020
    Assignee: NeoTract, Inc.
    Inventor: John Stiggelbout
  • Publication number: 20190274833
    Abstract: Embodiments described herein include devices, systems, and methods for reducing the distance between two locations in tissue. In one embodiment, an anchor may reside within the right ventricle in engagement with the septum. A tension member may extend from that anchor through the septum and an exterior wall of the left ventricle to a second anchor disposed along a surface of the heart. Perforating the exterior wall and the septum from an epicardial approach can provide control over the reshaping of the ventricular chamber. Guiding deployment of the implant from along the epicardial access path and another access path into and through the right ventricle provides control over the movement of the anchor within the ventricle. The joined epicardial pathway and right atrial pathway allows the tension member to be advanced into the heart through the right atrium and pulled into engagement along the epicardial access path.
    Type: Application
    Filed: January 8, 2019
    Publication date: September 12, 2019
    Applicant: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, Murray Sheldon, Ernie Heflin, Andrew Wechsler, John Stiggelbout, Rovil Arcia, John Bower
  • Publication number: 20190246880
    Abstract: The invention encompasses devices and methods used to keep the objective lens of a viewing or illuminating device, specifically an endoscope, free from obstructive fluid and dirt; specifically a device having a hollow body designed to fit over an endoscope, a transparent lens cover film that is retained within the device and that is threaded in front of the objective lens of an endoscope, thereby maintaining a clear and unobstructed transparent window in front of the endoscope lens, and an endcap configured to engage opposing edges of the lens cover film in a sealing manner.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 15, 2019
    Applicant: Medeon Biodesign, Inc.
    Inventors: I-Ching Wu, Thomas Hsu, Senzen Hsu, John Stiggelbout, Torrey Smith, Hungwen Wei, Mengjhe Sie
  • Patent number: 10307041
    Abstract: The invention encompasses devices and methods used to keep the objective lens of a viewing or illuminating device, specifically an endoscope, free from obstructive fluid and dirt; specifically a device having a hollow body designed to fit over an endoscope, a transparent lens cover film that is retained within the device and that is threaded in front of the objective lens of an endoscope, thereby maintaining a clear and unobstructed transparent window in front of the endoscope lens, and an endcap configured to engage opposing edges of the lens cover film in a sealing manner.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: June 4, 2019
    Assignee: Medeon Biodesign, Inc.
    Inventors: I-Ching Wu, Thomas Hsu, Senzen Hsu, John Stiggelbout, Torrey Smith, Hungwen Wei, Mengjhe Sie
  • Patent number: 10252027
    Abstract: Transvascular access devices and methods for transvascular access are provided. The transvascular access devices can include a guidewire lumen and a guide tube and stylet disposed in a second lumen. The guide tube can be used to control the orientation of the stylet and provide additional support for the stylet. The methods include providing a second entry point in a vessel of a patient remote from a first entry point. A vascular catheter can enter the vascular system of a patient at a first entry point and be advanced to a second entry point. A guide tube can be advanced out the second lumen of the vascular catheter with a stylet advanced out of the guide tube to pierce the vessel wall and skin of the patient at the second entry point. A catheter can be introduced to the vascular system at the second entry point.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: April 9, 2019
    Assignee: Vascular Access Technologies, Inc.
    Inventors: Lakshmikumar Pillai, Patrick Burt, John Lunsford, John Stiggelbout
  • Patent number: 10179049
    Abstract: Embodiments described herein include devices, systems, and methods for reducing the distance between two locations in tissue. In one embodiment, an anchor may reside within the right ventricle in engagement with the septum. A tension member may extend from that anchor through the septum and an exterior wall of the left ventricle to a second anchor disposed along a surface of the heart. Perforating the exterior wall and the septum from an epicardial approach can provide control over the reshaping of the ventricular chamber. Guiding deployment of the implant from along the epicardial access path and another access path into and through the right ventricle provides control over the movement of the anchor within the ventricle. The joined epicardial pathway and right atrial pathway allows the tension member to be advanced into the heart through the right atrium and pulled into engagement along the epicardial access path.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: January 15, 2019
    Assignee: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, Murray Sheldon, Ernie Heflin, Andrew Wechsler, John Stiggelbout, Rovil Arcia, John Bower
  • Publication number: 20190008504
    Abstract: An anchor delivery system configured for single patient, multiple use applications. The system includes reloading linkages which cooperate with needle, suture and anchor subassemblies and devices. Reloading actions accomplish the acceptance of a subsequent anchor cartridge and the readying of delivery structure.
    Type: Application
    Filed: January 5, 2018
    Publication date: January 10, 2019
    Inventor: John Stiggelbout
  • Publication number: 20180256142
    Abstract: A system and associated method for manipulating tissues and anatomical or other structures in medical applications for the purpose of treating diseases or disorders or other purposes. In one aspect, the system includes a delivery device configured to deploy and implant anchor devices for such purposes.
    Type: Application
    Filed: May 9, 2018
    Publication date: September 13, 2018
    Inventors: Ling-Kang Tong, Joseph Catanese, III, Floria Cheng, Jolene Cutts, Daniel Merrick, Theodore C. Lamson, Kristin Taylor, Earl A. Bright, II, Michael Gearhart, Matthew McLean, James Niederjohn, Brian Y. Tachibana, Andrew L. Johnston, John Stiggelbout
  • Patent number: 9937043
    Abstract: Embodiments described herein provide devices, systems, and methods that reduce the distance between two locations in tissue, often for treatment of congestive heart failure. For example, an anchor of an implant system may, when the implant system is fully deployed, reside within the right ventricle in engagement with the ventricular septum. The anchor may be deployed into the heart through a working lumen of a minimally invasive access tool. The minimally invasive access tool may have a plurality of grippers near a distal end of the working lumen. The grippers may engage epicardial tissue of the heart and may be moved radially inwardly relative so as to provide stabilization of the epicardial tissue and/or hemostasis near an access site where the anchor is inserted through the epicardium. The minimally invasive access tool may minimize blood loss from the access site and improve anchor implant processes.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: April 10, 2018
    Assignee: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, John Stiggelbout, Rovil Arcia
  • Patent number: 9877714
    Abstract: An anchor delivery system configured for single patient, multiple use applications. The system includes reloading linkages which cooperate with needle, suture and anchor subassemblies and devices. Reloading actions accomplish the acceptance of a subsequent anchor cartridge and the readying of delivery structure.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: January 30, 2018
    Assignee: NeoTract, Inc.
    Inventor: John Stiggelbout
  • Publication number: 20170224490
    Abstract: Embodiments described herein include devices, systems, and methods for reducing the distance between two locations in tissue. In one embodiment, an anchor may reside within the right ventricle in engagement with the septum. A tension member may extend from that anchor through the septum and an exterior wall of the left ventricle to a second anchor disposed along a surface of the heart. Perforating the exterior wall and the septum from an epicardial approach can provide control over the reshaping of the ventricular chamber. Guiding deployment of the implant from along the epicardial access path and another access path into and through the right ventricle provides control over the movement of the anchor within the ventricle. The joined epicardial pathway and right atrial pathway allows the tension member to be advanced into the heart through the right atrium and pulled into engagement along the epicardial access path.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Applicant: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, Murray Sheldon, Ernie Heflin, Andrew Wechsler, John Stiggelbout, Rovil Arcia, John Bower
  • Patent number: 9662212
    Abstract: Embodiments described herein include devices, systems, and methods for reducing the distance between two locations in tissue. In one embodiment, an anchor may reside within the right ventricle in engagement with the septum. A tension member may extend from that anchor through the septum and an exterior wall of the left ventricle to a second anchor disposed along a surface of the heart. Perforating the exterior wall and the septum from an epicardial approach can provide control over the reshaping of the ventricular chamber. Guiding deployment of the implant from along the epicardial access path and another access path into and through the right ventricle provides control over the movement of the anchor within the ventricle. The joined epicardial pathway and right atrial pathway allows the tension member to be advanced into the heart through the right atrium and pulled into engagement along the epicardial access path.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: May 30, 2017
    Assignee: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, Murray Sheldon, Ernie Heflin, Andrew Wechsler, John Stiggelbout, Rovil Arcia, John Bower
  • Publication number: 20160338835
    Abstract: Embodiments described herein include devices, systems, and methods for reducing the distance between two locations in tissue. In one embodiment, an anchor may reside within the right ventricle in engagement with the septum. A tension member may extend from that anchor through the septum and an exterior wall of the left ventricle to a second anchor disposed along a surface of the heart. Perforating the exterior wall and the septum from an epicardial approach can provide control over the reshaping of the ventricular chamber. Guiding deployment of the implant from along the epicardial access path and another access path into and through the right ventricle provides control over the movement of the anchor within the ventricle. The joined epicardial pathway and right atrial pathway allows the tension member to be advanced into the heart through the right atrium and pulled into engagement along the epicardial access path.
    Type: Application
    Filed: April 15, 2016
    Publication date: November 24, 2016
    Applicant: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, Murray Sheldon, Ernie Heflin, Andrew Wechsler, John Stiggelbout, Rovil Arcia, John Bower
  • Patent number: 9320513
    Abstract: Embodiments described include devices, systems, and methods for reducing the distance between two locations in tissue. An anchor may reside within the right ventricle in engagement with the septum. A tension member may extend from that anchor through the septum and an exterior wall of the left ventricle to a second anchor disposed along a surface of the heart. Perforating the exterior wall and the septum from an epicardial approach can provide control over the reshaping of the ventricular chamber. Guiding deployment of the implant from along the epicardial access path and another access path into and through the right ventricle provides control over movement of the anchor within the ventricle. The joined epicardial pathway and right atrial pathway allows the tension member to be advanced into the heart through the right atrium and pulled into engagement along the epicardial access path.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: April 26, 2016
    Assignee: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, Murray Sheldon, Ernie Heflin, Andrew Wechsler, John Stiggelbout, Rovil Arcia, John Bower
  • Publication number: 20160074623
    Abstract: Transvascular access devices and methods for transvascular access are provided. The transvascular access devices can include a guidewire lumen and a guide tube and stylet disposed in a second lumen. The guide tube can be used to control the orientation of the stylet and provide additional support for the stylet. The methods include providing a second entry point in a vessel of a patient remote from a first entry point. A vascular catheter can enter the vascular system of a patient at a first entry point and be advanced to a second entry point. A guide tube can be advanced out the second lumen of the vascular catheter with a stylet advanced out of the guide tube to pierce the vessel wall and skin of the patient at the second entry point. A catheter can be introduced to the vascular system at the second entry point.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Inventors: Lakshmikumar PILLAI, Patrick BURT, John LUNSFORD, John STIGGELBOUT