Patents by Inventor John V. Arthur

John V. Arthur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190303740
    Abstract: Block transfer of neuron output values through data memory for neurosynaptic processors is provided, which in some embodiments includes time-multiplexing. A neurosynaptic core is adapted to apply a plurality of synaptic weights to a plurality of input activations to produce a plurality of output activations. Synaptic weights for one of a plurality of logical cores are read. The neurosynaptic core is configured to implement the one of the plurality of logical cores using the synaptic weights. At least one data block is provided as contiguous input activations to the neurosynaptic core. The input activations are processed by the neurosynaptic core to determine at least one contiguous block of output activations.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 3, 2019
    Inventors: John V. Arthur, Pallab Datta, Steven K. Esser, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20190294950
    Abstract: Embodiments of the invention provide a system and circuit interconnecting peripheral devices to neurosynaptic core circuits. The neurosynaptic system includes an interconnect that includes different types of communication channels. A device connects to the neurosynaptic system via the interconnect.
    Type: Application
    Filed: May 30, 2019
    Publication date: September 26, 2019
    Inventors: Filipp A. Akopyan, Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 10410109
    Abstract: Embodiments of the invention provide a system and circuit interconnecting peripheral devices to neurosynaptic core circuits. The neurosynaptic system includes an interconnect that includes different types of communication channels. A device connects to the neurosynaptic system via the interconnect.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: September 10, 2019
    Assignee: International Business Machines Corporation
    Inventors: Filipp A. Akopyan, Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20190228289
    Abstract: Embodiments of the invention relate to a time-division multiplexed neurosynaptic module with implicit memory addressing for implementing a neural network. One embodiment comprises maintaining neuron attributes for multiple neurons and maintaining incoming firing events for different time steps. For each time step, incoming firing events for said time step are integrated in a time-division multiplexing manner. Incoming firing events are integrated based on the neuron attributes maintained. For each time step, the neuron attributes maintained are updated in parallel based on the integrated incoming firing events for said time step.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 25, 2019
    Inventors: John V. Arthur, Bernard V. Brezzo, Leland Chang, Daniel J. Friedman, Paul A. Merolla, Dharmendra S. Modha, Robert K. Montoye, Jae-sun Seo, Jose A. Tierno
  • Publication number: 20190197394
    Abstract: Embodiments of the invention relate to a neural network system for simulating neurons of a neural model. One embodiment comprises a memory device that maintains neuronal states for multiple neurons, a lookup table that maintains state transition information for multiple neuronal states, and a controller unit that manages the memory device. The controller unit updates a neuronal state for each neuron based on incoming spike events targeting said neuron and state transition information corresponding to said neuronal state.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Pallab Datta, Paul A. Merolla, Dharmendra S. Modha
  • Patent number: 10331998
    Abstract: Embodiments of the invention relate to a time-division multiplexed neurosynaptic module with implicit memory addressing for implementing a neural network. One embodiment comprises maintaining neuron attributes for multiple neurons and maintaining incoming firing events for different time steps. For each time step, incoming firing events for said time step are integrated in a time-division multiplexing manner. Incoming firing events are integrated based on the neuron attributes maintained. For each time step, the neuron attributes maintained are updated in parallel based on the integrated incoming firing events for said time step.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: John V. Arthur, Bernard V. Brezzo, Leland Chang, Daniel J. Friedman, Paul A. Merolla, Dharmendra S. Modha, Robert K. Montoye, Jae-sun Seo, Jose A. Tierno
  • Publication number: 20190156209
    Abstract: Embodiments of the invention relate to a scalable neural hardware for the noisy-OR model of Bayesian networks. One embodiment comprises a neural core circuit including a pseudo-random number generator for generating random numbers. The neural core circuit further comprises a plurality of incoming electronic axons, a plurality of neural modules, and a plurality of electronic synapses interconnecting the axons to the neural modules. Each synapse interconnects an axon with a neural module. Each neural module receives incoming spikes from interconnected axons. Each neural module represents a noisy-OR gate. Each neural module spikes probabilistically based on at least one random number generated by the pseudo-random number generator unit.
    Type: Application
    Filed: November 30, 2018
    Publication date: May 23, 2019
    Inventors: John V. Arthur, Steven K. Esser, Paul A. Merolla, Dharmendra S. Modha
  • Patent number: 10282658
    Abstract: Embodiments of the invention relate to a neural network system for simulating neurons of a neural model. One embodiment comprises a memory device that maintains neuronal states for multiple neurons, a lookup table that maintains state transition information for multiple neuronal states, and a controller unit that manages the memory device. The controller unit updates a neuronal state for each neuron based on incoming spike events targeting said neuron and state transition information corresponding to said neuronal state.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: May 7, 2019
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Pallab Datta, Paul A. Merolla, Dharmendra S. Modha
  • Publication number: 20190121734
    Abstract: Memory-mapped interfaces for message passing computing systems are provided. According to various embodiments, a write request is received. The write request comprises write data and a write address. The write address is a memory address within a memory map. The write address is translated into a neural network address. The neural network address identifies at least one input location of a destination neural network. The write data is sent via a network according to the neural network address to the at least one input location of the destination neural network. A message is received via the network from a source neural network. The message comprises data and at least one address. A location in a buffer is determined based on the at least one address. The data is stored at the location in the buffer. The buffer is accessible via the memory map.
    Type: Application
    Filed: October 20, 2017
    Publication date: April 25, 2019
    Inventors: Filipp A. Akopyan, John V. Arthur, Andrew S. Cassidy, Michael V. DeBole, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20190122114
    Abstract: Hardware placement of neural networks is provided. In various embodiments, a network description is read. The network description describes a spiking neural network. The neural network is trained. An initial placement of the neural network on a plurality of cores is performed. The cores are located on a plurality of chips. Inter-chip communications are measured based on the initial placement. A final placement of the neural network on the plurality of cores is performed based on the inter-chip communications measurements and the initial placement. The final placement reduces inter-chip communication.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 25, 2019
    Inventors: John V. Arthur, Pallab Datta, Steven K. Esser, Myron D. Flickner, Dharmendra S. Modha, Tapan K. Nayak
  • Patent number: 10204118
    Abstract: Embodiments of the invention relate to mapping neural dynamics of a neural model on to a lookup table. One embodiment comprises defining a phase plane for a neural model. The phase plane represents neural dynamics of the neural model. The phase plane is coarsely sampled to obtain state transition information for multiple neuronal states. The state transition information is mapped on to a lookup table.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: February 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Pallab Datta, Paul A. Merolla, Dharmendra S. Modha
  • Patent number: 10198692
    Abstract: Embodiments of the invention relate to a scalable neural hardware for the noisy-OR model of Bayesian networks. One embodiment comprises a neural core circuit including a pseudo-random number generator for generating random numbers. The neural core circuit further comprises a plurality of incoming electronic axons, a plurality of neural modules, and a plurality of electronic synapses interconnecting the axons to the neural modules. Each synapse interconnects an axon with a neural module. Each neural module receives incoming spikes from interconnected axons. Each neural module represents a noisy-OR gate. Each neural module spikes probabilistically based on at least one random number generated by the pseudo-random number generator unit.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: February 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: John V. Arthur, Steven K. Esser, Paul A. Merolla, Dharmendra S. Modha
  • Patent number: 10176063
    Abstract: Embodiments of the invention relate to faulty recovery mechanisms for a three-dimensional (3-D) network on a processor array. One embodiment comprises a multidimensional switch network for a processor array. The switch network comprises multiple switches for routing packets between multiple core circuits of the processor array. The switches are organized into multiple planes. The switch network further comprises a redundant plane including multiple redundant switches. Multiple data paths interconnect the switches. The redundant plane is used to facilitate full operation of the processor array in the event of one or more component failures.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: January 8, 2019
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, Jr., Andrew S. Cassidy, Subramanian Iyer, Paul A. Merolla, Dharmendra S. Modha
  • Patent number: 10169700
    Abstract: Embodiments of the invention relate to a globally asynchronous and locally synchronous neuromorphic network. One embodiment comprises generating a synchronization signal that is distributed to a plurality of neural core circuits. In response to the synchronization signal, in at least one core circuit, incoming spike events maintained by said at least one core circuit are processed to generate an outgoing spike event. Spike events are asynchronously communicated between the core circuits via a routing fabric comprising multiple asynchronous routers.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Paul A. Merolla, Dharmendra S. Modha
  • Patent number: 10102474
    Abstract: The present invention provides a system comprising multiple core circuits. Each core circuit comprises multiple electronic axons for receiving event packets, multiple electronic neurons for generating event packets, and a fanout crossbar including multiple electronic synapse devices for interconnecting the neurons with the axons. The system further comprises a routing system for routing event packets between the core circuits. The routing system virtually connects each neuron with one or more programmable target axons for the neuron by routing each event packet generated by the neuron to the target axons. Each target axon for each neuron of each core circuit is an axon located on the same core circuit as, or a different core circuit than, the neuron.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: October 16, 2018
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20180287862
    Abstract: Embodiments of the invention provide a neurosynaptic network circuit comprising multiple neurosynaptic devices including a plurality of neurosynaptic core circuits for processing one or more data packets. The neurosynaptic devices further include a routing system for routing the data packets between the core circuits. At least one of the neurosynaptic devices is faulty. The routing system is configured for selectively bypassing each faulty neurosynaptic device when processing and routing the data packets.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 4, 2018
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20180232634
    Abstract: One embodiment provides a system comprising a memory device for maintaining deterministic neural data relating to a digital neuron and a logic circuit for deterministic neural computation and stochastic neural computation. Deterministic neural computation comprises processing a neuronal state of the neuron based on the deterministic neural data maintained. Stochastic neural computation comprises generating stochastic neural data relating to the neuron and processing the neuronal state of the neuron based on the stochastic neural data generated.
    Type: Application
    Filed: April 10, 2018
    Publication date: August 16, 2018
    Inventors: Rodrigo Alvarez-Icaza, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20180211163
    Abstract: Embodiments of the invention relate to providing transposable access to a synapse array using a recursive array layout. One embodiment comprises maintaining synaptic weights for multiple synapses connecting multiple axons and multiple neurons, wherein the synaptic weights are maintained based on a recursive array layout. The recursive array layout facilitates transposable access to the synaptic weights. A neuronal spike event between an axon and a neuron is communicated via a corresponding connecting synapse by accessing the synaptic weight of the corresponding connecting synapse in the recursive array layout.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 26, 2018
    Inventors: John V. Arthur, John E. Barth, JR., Paul A. Merolla, Dharmendra S. Modha
  • Patent number: 9992057
    Abstract: Embodiments of the invention provide a neurosynaptic network circuit comprising multiple neurosynaptic devices including a plurality of neurosynaptic core circuits for processing one or more data packets. The neurosynaptic devices further include a routing system for routing the data packets between the core circuits. At least one of the neurosynaptic devices is faulty. The routing system is configured for selectively bypassing each faulty neurosynaptic device when processing and routing the data packets.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: June 5, 2018
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9984324
    Abstract: One embodiment provides a system comprising a memory device for maintaining deterministic neural data relating to a digital neuron and a logic circuit for deterministic neural computation and stochastic neural computation. Deterministic neural computation comprises processing a neuronal state of the neuron based on the deterministic neural data maintained. Stochastic neural computation comprises generating stochastic neural data relating to the neuron and processing the neuronal state of the neuron based on the stochastic neural data generated.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada