Patents by Inventor John Van Heteren

John Van Heteren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11896851
    Abstract: A method of radiation therapy comprises, while a gantry of a radiation therapy system rotates continuously in a first direction through a treatment arc from a first treatment delivery position to a second treatment delivery position, causing an imaging X-ray source mounted on the gantry to direct X-rays through a target volume and receiving a set of X-ray projection images from an X-ray imager mounted on the gantry; determining a current location of the target volume based on the set of X-ray projection images; and while the gantry to continues to rotate to the second treatment delivery position, initiating delivery of a treatment beam of a treatment-delivering X-ray source mounted on the gantry to the target volume, and continuing to cause the gantry to rotate in the first direction from the second treatment delivery position to a third treatment delivery position.
    Type: Grant
    Filed: September 5, 2021
    Date of Patent: February 13, 2024
    Assignee: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: John Van Heteren, Liangjia Zhu, Daniel Morf
  • Publication number: 20230201631
    Abstract: An example method of radiation therapy in a radiation therapy system that includes a gantry with a treatment-delivering X-ray source and an imaging X-ray source mounted thereon is described. The method includes rotating the gantry in a first direction at a first rotational velocity about an open bore and concurrently rotating an annular support structure at a second rotational velocity about the open bore, wherein the second rotational velocity is less than the first rotational velocity. While continuing to rotate the gantry in the first direction about the open bore from a first position to a treatment position, the method also includes generating multiple images of a target volume disposed in the bore using the imaging X-ray source. Upon rotating the gantry to the treatment position, the method includes initiating delivery of a treatment beam to the target volume with the treatment-delivering X-ray source.
    Type: Application
    Filed: February 18, 2023
    Publication date: June 29, 2023
    Applicant: Varian Medical Systems, Inc.
    Inventors: Blake GADERLUND, Josh STAR-LACK, John VAN HETEREN, Adam WANG
  • Patent number: 11583704
    Abstract: An example method of radiation therapy in a radiation therapy system that includes a gantry with a treatment-delivering X-ray source and an imaging X-ray source mounted thereon is described. The method includes rotating the gantry in a first direction at a first rotational velocity about an open bore and concurrently rotating an annular support structure at a second rotational velocity about the open bore, wherein the second rotational velocity is less than the first rotational velocity. While continuing to rotate the gantry in the first direction about the open bore from a first position to a treatment position, the method also includes generating multiple images of a target volume disposed in the bore using the imaging X-ray source. Upon rotating the gantry to the treatment position, the method includes initiating delivery of a treatment beam to the target volume with the treatment-delivering X-ray source.
    Type: Grant
    Filed: March 14, 2021
    Date of Patent: February 21, 2023
    Assignee: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: Blake Gaderlund, Josh Star-Lack, John Van Heteren, Adam Wang
  • Publication number: 20210393989
    Abstract: A method of radiation therapy comprises, while a gantry of a radiation therapy system rotates continuously in a first direction through a treatment arc from a first treatment delivery position to a second treatment delivery position, causing an imaging X-ray source mounted on the gantry to direct X-rays through a target volume and receiving a set of X-ray projection images from an X-ray imager mounted on the gantry; determining a current location of the target volume based on the set of X-ray projection images; and while the gantry to continues to rotate to the second treatment delivery position, initiating delivery of a treatment beam of a treatment-delivering X-ray source mounted on the gantry to the target volume, and continuing to cause the gantry to rotate in the first direction from the second treatment delivery position to a third treatment delivery position.
    Type: Application
    Filed: September 5, 2021
    Publication date: December 23, 2021
    Applicant: Varian Medical Systems, Inc.
    Inventors: John VAN HETEREN, Liangjia ZHU, Daniel MORF
  • Patent number: 11110300
    Abstract: A method of radiation therapy comprises, while a gantry of a radiation therapy system rotates continuously in a first direction through a treatment arc from a first treatment delivery position to a second treatment delivery position, causing an imaging X-ray source mounted on the gantry to direct X-rays through a target volume and receiving a set of X-ray projection images from an X-ray imager mounted on the gantry; determining a current location of the target volume based on the set of X-ray projection images; and while the gantry to continues to rotate to the second treatment delivery position, initiating delivery of a treatment beam of a treatment-delivering X-ray source mounted on the gantry to the target volume, and continuing to cause the gantry to rotate in the first direction from the second treatment delivery position to a third treatment delivery position.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: September 7, 2021
    Assignee: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: John Van Heteren, Liangjia Zhu, Daniel Morf
  • Publication number: 20210196985
    Abstract: An example method of radiation therapy in a radiation therapy system that includes a gantry with a treatment-delivering X-ray source and an imaging X-ray source mounted thereon is described. The method includes rotating the gantry in a first direction at a first rotational velocity about an open bore and concurrently rotating an annular support structure at a second rotational velocity about the open bore, wherein the second rotational velocity is less than the first rotational velocity. While continuing to rotate the gantry in the first direction about the open bore from a first position to a treatment position, the method also includes generating multiple images of a target volume disposed in the bore using the imaging X-ray source. Upon rotating the gantry to the treatment position, the method includes initiating delivery of a treatment beam to the target volume with the treatment-delivering X-ray source.
    Type: Application
    Filed: March 14, 2021
    Publication date: July 1, 2021
    Applicant: Varian Medical Systems, Inc.
    Inventors: Blake GADERLUND, Josh STAR-LACK, John VAN HETEREN, Adam WANG
  • Patent number: 11027153
    Abstract: A radiation therapy system is configured to enable imaging and treatment of a target volume during a single patient breath hold. The radiation system includes a rotating gantry on which are mounted a treatment-delivering X-ray source and multiple imaging X-ray sources and corresponding X-ray imaging devices. The multiple imaging X-ray sources and X-ray imaging devices enable the acquisition of volumetric image data for the target volume over a relatively short rotational arc, for example 30 degrees or less. Therefore, intra-fraction motion can be detected in near-real time, for example within about one second or less. The radiation therapy system can perform image guided radiation therapy (IGRT) that monitors intra-fraction motion using X-ray imaging. Detected anatomical variations can then either be compensated for, via patient repositioning and/or treatment modification, or the current treatment can be aborted.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 8, 2021
    Assignee: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: John Van Heteren, Liangjia Zhu, Daniel Morf, Stefan Georg Scheib, Pascal Paysan
  • Patent number: 10967202
    Abstract: A method of generating an image synthesis process is disclosed, where the image synthesis process improves image quality of degraded volumetric images. In the method, a machine learning process is trained in a supervised learning framework as the image synthesis process. In the supervised learning process, a lower-quality partial-data reconstruction of a target volume is employed as an input object in the supervised learning process and a higher-quality full data reconstruction of the target volume is employed as an expected output. The full data reconstruction is generated based on a first set of projection images of the three-dimensional volume and the partial-data reconstruction is generated based on a second set of projection images of the three-dimensional volume, where the second set of projection images includes projection images that have less image information and/or are of a lower image quality than the first set of projection images.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: April 6, 2021
    Assignee: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: John Van Heteren, Petr Jordan, Adam Wang, Josh Star-Lack
  • Patent number: 10960232
    Abstract: A radiation therapy system delivers radiation treatment over a 360-degree arc and performs a prepended imaging process, in a single pass, via an extended rotation gantry. While rotating the gantry in one direction about a bore of the radiation system, the radiation system generates multiple images of a target volume disposed in the bore using an imaging X-ray source mounted on the gantry. Then, while continuing to rotate the gantry in the same direction, the radiation system delivers a treatment beam to the target volume using a treatment-delivering X-ray source mounted on the gantry, where the treatment beam is delivered from some or all of a 360-degree arc about the bore. Thus, the prepended imaging process and the delivery of radiation are performed in a single pass of the gantry about a target volume, eliminating the need for a return stroke of the gantry for completion.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: March 30, 2021
    Assignee: VARIAN MEDICAL SYSTEMS, INC.
    Inventors: Blake Gaderlund, Josh Star-Lack, John Van Heteren, Adam Wang
  • Publication number: 20200030633
    Abstract: A method of radiation therapy comprises, while a gantry of a radiation therapy system rotates continuously in a first direction through a treatment arc from a first treatment delivery position to a second treatment delivery position, causing an imaging X-ray source mounted on the gantry to direct X-rays through a target volume and receiving a set of X-ray projection images from an X-ray imager mounted on the gantry; determining a current location of the target volume based on the set of X-ray projection images; and while the gantry to continues to rotate to the second treatment delivery position, initiating delivery of a treatment beam of a treatment-delivering X-ray source mounted on the gantry to the target volume, and continuing to cause the gantry to rotate in the first direction from the second treatment delivery position to a third treatment delivery position.
    Type: Application
    Filed: June 25, 2019
    Publication date: January 30, 2020
    Applicant: Varian Medical Systems, Inc.
    Inventors: John VAN HETEREN, Liangjia ZHU, Daniel MORF
  • Publication number: 20200030634
    Abstract: A radiation therapy system is configured to enable imaging and treatment of a target volume during a single patient breath hold. The radiation system includes a rotating gantry on which are mounted a treatment-delivering X-ray source and multiple imaging X-ray sources and corresponding X-ray imaging devices. The multiple imaging X-ray sources and X-ray imaging devices enable the acquisition of volumetric image data for the target volume over a relatively short rotational arc, for example 30 degrees or less. Therefore, intra-fraction motion can be detected in near-real time, for example within about one second or less. The radiation therapy system can perform image guided radiation therapy (IGRT) that monitors intra-fraction motion using X-ray imaging. Detected anatomical variations can then either be compensated for, via patient repositioning and/or treatment modification, or the current treatment can be aborted.
    Type: Application
    Filed: June 25, 2019
    Publication date: January 30, 2020
    Applicant: Varian Medical Systems, Inc.
    Inventors: John VAN HETEREN, Liangjia ZHU, Daniel MORF, Stefan Georg SCHEIB, Pascal PAYSAN
  • Publication number: 20200030636
    Abstract: A radiation therapy system delivers radiation treatment over a 360-degree arc and performs a prepended imaging process, in a single pass, via an extended rotation gantry. While rotating the gantry in one direction about a bore of the radiation system, the radiation system generates multiple images of a target volume disposed in the bore using an imaging X-ray source mounted on the gantry. Then while continuing to rotate the gantry in the same direction, the radiation system delivers a treatment beam to the target volume using a treatment-delivering X-ray source mounted on the gantry, where the treatment beam is delivered from some or all of a 360-degree arc about the bore. Thus, the prepended imaging process and the delivery of radiation are performed in a single-pass of the gantry about a target volume, eliminating the need for a return stroke of the gantry for completion.
    Type: Application
    Filed: November 5, 2018
    Publication date: January 30, 2020
    Applicant: Varian Medical Systems, Inc.
    Inventors: Blake GADERLUND, Josh STAR-LACK, John VAN HETEREN, Adam WANG
  • Publication number: 20200034999
    Abstract: A method of generating an image synthesis process is disclosed, where the image synthesis process improves image quality of degraded volumetric images. In the method, a machine learning process is trained in a supervised learning framework as the image synthesis process. In the supervised learning process, a lower-quality partial-data reconstruction of a target volume is employed as an input object in the supervised learning process and a higher-quality full data reconstruction of the target volume is employed as an expected output. The full data reconstruction is generated based on a first set of projection images of the three-dimensional volume and the partial-data reconstruction is generated based on a second set of projection images of the three-dimensional volume, where the second set of projection images includes projection images that have less image information and/or are of a lower image quality than the first set of projection images.
    Type: Application
    Filed: June 4, 2019
    Publication date: January 30, 2020
    Applicant: Varian Medical Systems, Inc.
    Inventors: John VAN HETEREN, Petr JORDAN, Adam WANG, Josh STAR-LACK
  • Patent number: 9138145
    Abstract: Apparatus for radiation therapy combines a patient table, an MRI and a radiation treatment apparatus mounted in a common treatment room with the MR magnet movable from a position outside a radiation shielded door to an imaging position. An RF-shielded door is movable between a position, separating part of the treatment apparatus from the magnet and an open position allowing access of the patient to the treatment apparatus. In one configuration there is a row of treatment rooms and the magnet is mounted to move along a passageway outside the row of radiation shielded doors of the rooms.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: September 22, 2015
    Assignee: Imris Inc.
    Inventors: Gordon Klimenko, Meir Dahan, Brendan Guyot, Labros Petropoulos, John Saunders, John Van Heteren, Jeff Winter, Hongxiang Yi
  • Publication number: 20130317343
    Abstract: Apparatus for radiation therapy combines a patient table, an MRI and a radiation treatment apparatus mounted in a common treatment room with the MR magnet movable from a position outside a radiation shielded door to an imaging position. An RF-shielded door is movable between a position, separating part of the treatment apparatus from the magnet and an open position allowing access of the patient to the treatment apparatus. In one configuration there is a row of treatment rooms and the magnet is mounted to move along a passageway outside the row of radiation shielded doors of the rooms.
    Type: Application
    Filed: June 14, 2012
    Publication date: November 28, 2013
    Inventors: Gordon Klimenko, Meir Dahan, Brendan Guyot, Labros Petropoulos, John Saunders, John Van Heteren, Jeff Winter, Hongxiang Yi
  • Publication number: 20060111796
    Abstract: Methods and apparatus, including computer program products, implementing and using techniques for intelligent two-way telemetry. A telemetry system in accordance with the invention includes one or more telemetry units that can receive and send data The system further includes one or more controllers that includes intelligence for processing data from the one or more telemetry units and for autonomously communicating with the one or more telemetry units. The controllers are separately located from a data processing center of the telemetry system such that the controllers alleviate data congestion going to and coming from the data processing center.
    Type: Application
    Filed: November 28, 2005
    Publication date: May 25, 2006
    Inventor: John Van Heteren
  • Patent number: 5565779
    Abstract: A front end unit (32) for a magnetic resonance imaging (MRI) system (20) comprises a plurality of coil attachment ports (46) to which an RF signal or tuning signal is selectively routed thereby permitting, during operation, coils (22) to remain attached to each of the plurality of ports. A signal routing controller (28, 30) selects to which of the ports the RF signal or tuning signal is to be routed. The RF front end unit (32) is also known as the relay switch board assembly or RSB. Each port of the RF front end is attached to a different RF coil or RF coil combination. Tuning and imaging operations can be conducted for a plurality of coils in succession, without coils having to be detached from the RF front end. The signal routing controller selectively applies the RF signal (from an RF unit) or the tuning signal (from a tuning controller) to the selected coil through a signal path unique to the selected coil. Coils not selected to be operative can be detuned.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 15, 1996
    Assignee: The Regents of the University of California
    Inventors: Mitsuaki Arakawa, Hsu Chang, John Van Heteren
  • Patent number: 5483158
    Abstract: An RF front end unit (32) for a magnetic resonance imaging (MRI) system (20) has transmit and receive channels to which a plurality of coils (22) can remain attached during operation (including RF coils having differing types of matching circuits), and facilitates switching between a plurality of attached coils. Methods and apparatus are additionally provided for selectively tuning differing RF coils, including both high power coils (22B, 22C) and varactor-tuned coils (22D). The tuning of a high power coil involves using a remote impedance match tuning network (RTU) (26) for a coarse tuning operation and, if necessary, a fine tuning operation. In performing the coarse tuning operation separately for In-Phase ("I") and Quadrature ("Q") channels, a tuning controller (60) determines the effective load impedance of each of the RF coil channels by quadrature demodulation of their reflected signals.
    Type: Grant
    Filed: October 21, 1993
    Date of Patent: January 9, 1996
    Assignee: The Regents of the University of California
    Inventors: John van Heteren, Mitsuaki Arakawa
  • Patent number: 5461314
    Abstract: A front end unit (32) for a magnetic resonance imaging (MRI) system (20) comprises a plurality of coil attachment ports (46) to which an RF signal or tuning signal is selectively routed thereby permitting, during operation, coils (22) to remain attached to each of the plurality of ports. A signal routing controller (28, 30) selects to which of the ports the RF signal or tuning signal is to be routed. The RF front end Knit (32) is also known as the relay switchboard assembly or RSB. Each port of the RF front end is attached to a different RF coil or RF coil combination. Tuning and imaging operations can be conducted for a plurality of coils in succession, without coils having to be detached from the RF front end. The signal routing controller selectively applies the RF signal (from an RF unit) or the tuning signal (from a tuning controller) to the selected coil through a signal path unique to the selected coil. Coils not selected to be operative can be detuned.
    Type: Grant
    Filed: October 21, 1993
    Date of Patent: October 24, 1995
    Assignee: The Regents of the University of California
    Inventors: Mitsuaki Arakawa, Hsu Chang, John Van Heteren
  • Patent number: 5436600
    Abstract: A local frequency generator employing a single crystal oscillator, latches and direct digital synthesizer circuits digitally produces all signals needed in the transmitter channel of a MRI system to generate MRI transmitter RF pulses. The local frequency generator is operable in both the single side band and double side band modes and has the capability of switching between the modes. The generator is constructed with a phase resetting capability for providing the plural output frequencies needed for making plural MRI slices.
    Type: Grant
    Filed: July 29, 1994
    Date of Patent: July 25, 1995
    Assignee: The Regents of the University of California
    Inventors: John Van Heteren, Mitsuaki Arakawa, Lawrence E. Crooks, John C. Hoenninger, III, Thomas McDermott, Keiji Furui