Patents by Inventor John W. Ketchum

John W. Ketchum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8619620
    Abstract: Techniques to select a suitable transmission mode for a data transmission in a multi channel communication system with multiple spatial channels having varying SNRs are presented in this disclosure. For certain embodiments, a closed-loop technique may be applied, in which back-off factors used to calculate an effective SNR value fed back to a transmitter are adjusted. An open-loop rate control scheme is also presented in which a transmitter may select a data rate and number of streams based on whether transmitted packets are received in error at a receiver.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: December 31, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Irina Medvedev, John W. Ketchum, J. Rodney Walton
  • Patent number: 8600297
    Abstract: Devices and methods are provided for providing self-timing and self-locating in an access point (AP) base station. In one embodiment, the method involves receiving Satellite Positioning System (SPS) signals from a first data source (e.g., plurality of satellites), wherein the SPS signals may include SPS time data, SPS frequency data, and SPS position data. The method may further involve obtaining from a second data source (e.g., cell site, terrestrial navigation station, server, user input interface, etc.) at least one of second time data, second frequency data and second position data, and determining relative reliability of the first and second data sources.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: December 3, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: John W. Ketchum, Srinath Nagaraj, Ashok Bhatia, Eric J. Katzfey, Lalitaprasad V. Daita, Sekharjyoti Baruah
  • Patent number: 8582430
    Abstract: Embodiments addressing MAC processing for efficient use of high throughput systems are disclosed. Data associated with at least one MAC ID can be aggregated into a single byte stream. The single byte stream can be formatted into MAC PDUs and then muxed. The muxed MAC PDUs can then be transmitted on a single MAC frame. Muxing of the MAC PDUs can be based on the priority of the MAC PDUs or other criteria. A MAC header can comprise information about the muxed PDUs, such as a pointer, that identifies the location of the MAC PDUs within the MAC frame. A MAC frame can contain partial MAC PDUs. The transmitted muxed MAC PDUs can be retransmitted, and an acknowledgment or feedback scheme may be used to help manage the transmission of the protocol data units.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: November 12, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: John W. Ketchum, Jay Rodney Walton, Sanjiv Nanda
  • Patent number: 8570988
    Abstract: Techniques are described to calibrate the downlink and uplink channels to account for differences in the frequency responses of the transmit and receive chains at an access point and a user terminal. In one method, pilots are transmitted on the downlink and uplink channels and used to derive estimates of the downlink and uplink channel responses, respectively. Correction factors for the access point and correction factors for the user terminal are determined based on (e.g., by performing matrix-ratio computation or minimum mean square error (MMSE) computation on) the downlink and uplink channel response estimates. The correction factors for the access point and the correction factors for the user terminal are used to obtain a calibrated downlink channel and a calibrated uplink channel, which are transpose of one another. The calibration may be performed in real time based on over-the-air transmission.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: October 29, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Mark S. Wallace, John W. Ketchum, J. Rodney Walton, Steven J. Howard
  • Publication number: 20130279614
    Abstract: Techniques to use OFDM symbols of different sizes to achieve greater efficiency for OFDM systems. The system traffic may be arranged into different categories (e.g., control data, user data, and pilot data). For each category, one or more OFDM symbols of the proper sizes may be selected for use based on the expected payload size for the traffic in that category. For example, control data may be transmitted using OFDM symbols of a first size, user data may be transmitted using OFDM symbols of the first size and a second size, and pilot data may be transmitted using OFDM symbols of a third size or the first size. In one exemplary design, a small OFDM symbol is utilized for pilot and for transport channels used to send control data, and a large OFDM symbol and the small OFDM symbol are utilized for transport channels used to send user data.
    Type: Application
    Filed: June 18, 2013
    Publication date: October 24, 2013
    Inventors: Jay Rod Walton, John W. Ketchum, Mark Wallace, Steven J. Howard
  • Publication number: 20130281086
    Abstract: Certain embodiments of the present disclosure relate to a method and an apparatus for managing and optimizing service discovery in a peer-to-peer (P2P) wireless network. Nodes of the P2P network advertise their capabilities to their peers in the form of services. Efficient propagation and management of node's services to other nodes is proposed in the present disclosure.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventors: Oliver MICHAELIS, J. Rodney Walton, John W. Ketchum
  • Publication number: 20130281146
    Abstract: Certain embodiments of the present disclosure relate to a method for improving the effective coverage of nodes within a peer-to-peer (P2P) wireless network. Collection of nodes of the P2P network can have a larger aggregate coverage footprint than any given single node. This inherent multi-site property of P2P wireless networks can be exploited to provide each node with benefits of multi-user diversity, thus improving discovery of devices in the P2P network.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventors: J. Rodney Walton, John W. Ketchum
  • Patent number: 8543070
    Abstract: Techniques for transmitting data using channel information for a subset of all subcarriers used for data transmission are described. A transmitter station receives channel information for at least one subcarrier that is a subset of multiple subcarriers used for data transmission. The channel information may include at least one transmit steering matrix, at least one set of eigenvectors, at least one channel response matrix, at least one channel covariance matrix, an unsteered pilot, or a steered pilot for the at least one subcarrier. The transmitter station obtains at least one transmit steering matrix for the at least one subcarrier from the channel information and determines a transmit steering matrix for each of the multiple subcarriers. The transmitter station performs transmit steering or beam-steering for each of the multiple subcarriers with the transmit steering matrix for that subcarrier.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: September 24, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Steven J. Howard, John W. Ketchum, Mark S. Wallace, Jay Rodney Walton
  • Publication number: 20130235825
    Abstract: A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.
    Type: Application
    Filed: April 4, 2013
    Publication date: September 12, 2013
    Applicant: QUALCOMM Incorporated
    Inventors: J. Rodney WALTON, John W. KETCHUM, Mark S. WALLACE, Steven J. HOWARD
  • Patent number: 8488706
    Abstract: Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the NS best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: July 16, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: John W. Ketchum, Steven J. Howard, Jay Rod Walton, Mark S. Wallace, Fuyun Ling
  • Patent number: 8483188
    Abstract: A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: July 9, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8478776
    Abstract: A collection of nodes in a peer-to-peer (P2P) network can have a larger aggregate coverage footprint than any given single node. This inherent multi-site property of P2P wireless networks can provide each node with benefits of multi-user diversity. This can improve the effective coverage of nodes within a P2P wireless network and improve discovery of devices in the P2P network.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: July 2, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum
  • Patent number: 8477858
    Abstract: Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the NS best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: July 2, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: John W. Ketchum, Steven J. Howard, Jay Rod Walton, Mark S. Wallace, Fuyun Ling
  • Patent number: 8478820
    Abstract: Certain embodiments of the present disclosure relate to a method and an apparatus for managing and optimizing service discovery in a peer-to-peer (P2P) wireless network. Nodes of the P2P network advertise their capabilities to their peers in the form of services. Efficient propagation and management of node's services to other nodes is proposed in the present disclosure.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: July 2, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Oliver Michaelis, J. Rodney Walton, John W. Ketchum
  • Patent number: 8472473
    Abstract: Embodiments addressing MAC processing for efficient use of high throughput systems are disclosed. In one aspect, a protocol stack is disclosed comprising one or more of the following: an adaptation layer, a data link control layer, a physical layer, and a layer manager. In another aspect, physical layer feedback is used for adaptation layer processing. In one embodiment, physical layer feedback is used for segmentation. In another embodiment, physical layer feedback is used for multicast mapping onto one or more unicast channels. In another aspect, a data unit for transmission from a first station to a second station comprises zero or more complete sub-data units, zero or one partial sub-data units from a prior transmission, and zero or one partial sub-data units to fill the data unit. In one embodiment, a pointer may be used to indicate the location of any complete sub-data units.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: June 25, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: John W. Ketchum, Jay Rodney Walton, Sanjiv Nanda
  • Patent number: 8472306
    Abstract: In one aspect of a multiple-access OFDM-CDMA system, the data spreading is performed in the frequency domain by spreading each data stream with a respective spreading code selected from a set of available spreading codes. To support multiple access, system resources may be allocated and de-allocated to users (e.g., spreading codes may be assigned to users as needed, and transmit power may be allocated to users). Variable rate data for each user may be supported via a combination of spreading adjustment and transmit power scaling. Interference control techniques are also provided to improve system performance via power control of the downlink and/or uplink transmissions to achieve the desired level of performance while minimizing interference. A pilot may be transmitted by each transmitter unit to assist the receiver units perform acquisition, timing synchronization, carrier recovery, handoff, channel estimation, coherent data demodulation, and so on.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: June 25, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Steven J. Howard, Mark Wallace
  • Patent number: 8467466
    Abstract: Techniques for performing detection and decoding at a receiver are described. In one scheme, the receiver obtains R received symbol streams for M data streams transmitted by a transmitter, performs receiver spatial processing on the received symbols to obtain detected symbols, performs log-likelihood ratio (LLR) computation independently for each of D best data streams, and performs LLR computation jointly for the M?D remaining data streams, where M>D?1 and M>1. The D best data streams may be selected based on SNR and/or other criteria. In another scheme, the receiver performs LLR computation independently for each of the D best data streams, performs LLR computation jointly for the M?D remaining data streams, and reduces the number of hypotheses to consider for the joint LLR computation by performing a search for candidate hypotheses using list sphere detection, Markov chain Monte Carlo, or some other search technique.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: June 18, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Bjorn Bjerke, Irina Medvedev, John W. Ketchum, Mark S. Wallace, Jay Rodney Walton
  • Patent number: 8462653
    Abstract: Techniques to select a suitable transmission mode for a data transmission in a multi channel communication system with multiple spatial channels having varying SNRs are presented in this disclosure. For certain embodiments, a closed-loop technique may be applied, in which back-off factors used to calculate an effective SNR value fed back to a transmitter are adjusted. An open-loop rate control scheme is also presented in which a transmitter may select a data rate and number of streams based on whether transmitted packets are received in error at a receiver.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: June 11, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Irina Medvedev, John W. Ketchum, J. Rodney Walton
  • Patent number: 8462817
    Abstract: Embodiments addressing MAC processing for efficient use of high throughput systems are disclosed. In one aspect, a protocol stack is disclosed comprising one or more of the following: an adaptation layer, a data link control layer, a physical layer, and a layer manager. In another aspect, physical layer feedback is used for adaptation layer processing. In one embodiment, physical layer feedback is used for segmentation. In another embodiment, physical layer feedback is used for multicast mapping onto one or more unicast channels. In another aspect, a data unit for transmission from a first station to a second station comprises zero or more complete sub-data units, zero or one partial sub-data units from a prior transmission, and zero or one partial sub-data units to fill the data unit. In one embodiment, a pointer may be used to indicate the location of any complete sub-data units.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: June 11, 2013
    Assignee: Qualcomm Incorporated
    Inventors: John W. Ketchum, Jay Rodney Walton, Sanjiv Nanda
  • Patent number: 8462643
    Abstract: A multiple-access MIMO WLAN system that employs MIMO, OFDM, and TDD. The system (1) uses a channel structure with a number of configurable transport channels, (2) supports multiple rates and transmission modes, which are configurable based on channel conditions and user terminal capabilities, (3) employs a pilot structure with several types of pilot (e.g., beacon, MIMO, steered reference, and carrier pilots) for different functions, (4) implements rate, timing, and power control loops for proper system operation, and (5) employs random access for system access by the user terminals, fast acknowledgment, and quick resource assignments. Calibration may be performed to account for differences in the frequency responses of transmit/receive chains at the access point and user terminals. The spatial processing may then be simplified by taking advantage of the reciprocal nature of the downlink and uplink and the calibration.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: June 11, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, Mark S. Wallace, John W. Ketchum, Steven J. Howard