Patents by Inventor John W. Sliwa

John W. Sliwa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8641707
    Abstract: Medical devices using fluid or cooling fluids having one or more bimaterial valves positioned at each point of flow control to control the flow of a fluid in response to temperature changes. In particular, devices for ablating tissue having multiple ablation elements or cells include one or more bimaterial valves positioned within or near the ablation cells. The bimaterial valves respond to temperature changes by adjusting the flow rate of a fluid through the valve.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: February 4, 2014
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John E. Crowe, John W. Sliwa
  • Publication number: 20140031806
    Abstract: A medical device comprising a cell including an ablation element and a carrier configured to receive at least a portion of said ablation element is disclosed. The medical device further comprises a tube enclosing the cell. At least a portion of the tube includes a membrane and the tube includes at least one hole proximate the ablation element for facilitating fluid flow. The medical device further comprises a fluid inlet for providing fluid to the interior of the tube. A method of using the medical device is also disclosed.
    Type: Application
    Filed: October 3, 2013
    Publication date: January 30, 2014
    Applicant: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Zhenyi Ma, Gleb V. Klimovitch, John W. Sliwa
  • Patent number: 8551087
    Abstract: A medical device comprising a cell including an ablation element and a carrier configured to receive at least a portion of said ablation element is disclosed. The medical device further comprises a tube enclosing the cell. At least a portion of the tube includes a membrane and the tube includes at least one hole proximate the ablation element for facilitating fluid flow. The medical device further comprises a fluid inlet for providing fluid to the interior of the tube. A method of using the medical device is also disclosed.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: October 8, 2013
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Zhenyi Ma, Gleb V. Klimovitch, John W. Sliwa
  • Patent number: 8540707
    Abstract: Template systems and methods for various procedures (e.g., tissue ablation procedures) are disclosed. An exemplary template system comprises a track having at least one suction port. The at least one suction port anchors the track to a tissue after the track is positioned adjacent a target area. The template system may further comprise a transducer operatively associated with the track. Exemplary transducers include imaging transducers and ablating transducers. The transducer is guided by the track adjacent the target area while the transducer is moved along the track for a procedure. One or more umbilical may provide a conduit to the track and/or transducer so that the template system may be positioned in a patient's body (e.g., for a procedure on the patient's heart) and operated remotely by a physician or other user from outside of the patient's body.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: September 24, 2013
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John W. Sliwa, Thomas B. Eby
  • Patent number: 8444579
    Abstract: The invention discloses a system for delivering acoustic energy to a subject in connection with high intensity focused ultrasound (HIFU) systems. In an embodiment, the system comprises an optionally disposable waveguide-attached ablation applicator coupled with an optionally re-usable waveguide, and an optional acoustic power source. The systems may comprise acoustic energy exit port intensity control, waveguide heat-sinking, and transducer operational adjustments that accommodate waveguide effects on the traversing acoustic power.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: May 21, 2013
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventor: John W. Sliwa
  • Patent number: 8382689
    Abstract: A high intensity focused ultrasound transducer includes an ultrasonic emitter having a surface that emits ultrasonic energy along a beam path, at least one low attenuation polymeric ultrasonic lens acoustically coupled to the surface in the beam path of the ultrasonic energy, such that the lens can direct the ultrasonic energy in at least one direction, and at least one stress mitigation feature, such as a kerf, a heat sink, or an acoustic matching layer, to mitigate thermal expansion mismatch stresses within the transducer. For manufacturing simplicity, the first surface is typically either flat or monotonically curvilinear. The lens may take a variety of shapes, including Fresnel features, and may focus, collimate, or defocus the ultrasonic energy. Any orientation and positioning of the at least one ultrasonic lens relative to the first ultrasonic emitter is contemplated. Manufacture is further simplified by molding, casting, or thermoforming the lens.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: February 26, 2013
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John W. Sliwa, Peter Goetz, Zhenyi Ma, Jennifer Teng, Stephen Morse, Frank Callaghan, Timothy E. Ciciarelli
  • Publication number: 20130046320
    Abstract: A medical device comprising a cell including an ablation element and a carrier configured to receive at least a portion of said ablation element is disclosed. The medical device further comprises a tube enclosing the cell. At least a portion of the tube includes a membrane and the tube includes at least one hole proximate the ablation element for facilitating fluid flow. The medical device further comprises a fluid inlet for providing fluid to the interior of the tube. A method of using the medical device is also disclosed.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 21, 2013
    Inventors: Zhenyi Ma, Gleb V. Kimovitch, John W. Sliwa
  • Patent number: 8308719
    Abstract: A control system alters one or more characteristics of an ablating element to ablate tissue. In one aspect, the control system delivers energy nearer to the surface of the tissue by changing the frequency or power. In another aspect, the ablating element delivers focused ultrasound which is focused in at least one dimension. The ablating device may also have a number of ablating elements with different characteristics such as focal length.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: November 13, 2012
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John W. Sliwa, Timothy E. Ciciarelli
  • Patent number: 8289274
    Abstract: Volumetric three-dimensional (3-D) graphical or computer displays are disclosed herein that are capable of presenting objects, data, scenes or other visual information in a realistic or solid-like manner, allowing for an unaided observer to observe such static or moving objects from multiple perspectives with natural depth-cues and superior image quality. We utilize in this refined approach moving-screens formed from particulate-arrays and we preferably optically project multiple image sub-slices on each such flying-screen as it passes through the image-volume thereby minimizing particulate mass-flow since only once screen per image-volume is needed to present the several or many necessary slices of each volumetric frame.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: October 16, 2012
    Inventors: John W. Sliwa, Carol A. Tosaya
  • Patent number: 8267930
    Abstract: A medical device comprising a cell including an ablation element and a carrier configured to receive at least a portion of said ablation element is disclosed. The medical device further comprises a tube enclosing the cell. At least a portion of the tube includes a membrane and the tube includes at least one hole proximate the ablation element for facilitating fluid flow. The medical device further comprises a fluid inlet for providing fluid to the interior of the tube. A method of using the medical device is also disclosed.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: September 18, 2012
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Zhenyi Ma, Gleb V. Klimovitch, John W. Sliwa
  • Publication number: 20120172843
    Abstract: A deflectable, flexible device includes an elongate body, a convoluted tip portion at a distal end of the elongate body, and a lumen to receive one or more wires. The convoluted tip portion includes an electroformed pleated region which is formed by electrodepositing a metal on a mandrel having a pleated region. The convoluted tip portion may be hermetically sealed to permit repeated sterilization. The electroformed pleated region may include one or more fluid emission orifices. The convoluted tip portion extends or bends in response to fluid pressure manipulation, contact with tissue, manipulation with an internal spring or wire, or by a user pushing, pulling, or twisting the catheter directly or via an introducer sheath or the like. The convoluted tip portion may further include an RF ablation element or other energy-driven technique to create continuous linear lesions or a sensing element.
    Type: Application
    Filed: July 29, 2011
    Publication date: July 5, 2012
    Inventors: John W. Sliwa, Stephen A. Morse
  • Patent number: 8114069
    Abstract: An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: February 14, 2012
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John W. Sliwa, Jr., Matthias Vaska, Jonathan L. Podmore, Roxanne L. Richman, Scott C. Anderson, Gerard Champsaur, John E. Crowe
  • Patent number: 8102734
    Abstract: A high intensity focused ultrasound transducer includes an ultrasonic emitter having a surface that emits ultrasonic energy along a beam path, at least one low attenuation polymeric ultrasonic lens acoustically coupled to the surface in the beam path of the ultrasonic energy, such that the lens can direct the ultrasonic energy in at least one direction, and at least one stress mitigation feature, such as a kerf, a heat sink, or an acoustic matching layer, to mitigate thermal expansion mismatch stresses within the transducer. For manufacturing simplicity, the first surface is typically either flat or monotonically curvilinear. The lens may take a variety of shapes, including Fresnel features, and may focus, collimate, or defocus the ultrasonic energy. Any orientation and positioning of the at least one ultrasonic lens relative to the first ultrasonic emitter is contemplated. Manufacture is further simplified by molding, casting, or thermoforming the lens.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: January 24, 2012
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John W. Sliwa, Peter Goetz, Zhenyi Ma, Jennifer Teng, Stephen Morse, Frank Callaghan, Timothy E. Ciciarelli
  • Patent number: 8083707
    Abstract: Ultrasonic, sonic or vibratory energy, delivered non-invasively, minimally invasively or invasively (e.g. surgically), is utilized to provide direct cleaning action at or to the location of the implanted device such as a prosthetic heart valve with undesirable deposits of at least some amount thereon or therein. Such ultra-sound energy may be aided by the use of a drug in association or cooperation with the acoustic irradiation. The “cleaning” acoustic energy may optionally be delivered under the guidance of an imaging modality and may be delivered in a timed or gated manner such that the valve occluders or leaflets are in a preferred position (assuming they are functioning) during exposures.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: December 27, 2011
    Inventors: Carol A. Tosaya, John W. Sliwa, Jr.
  • Patent number: 8057465
    Abstract: An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: November 15, 2011
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John W. Sliwa, Jr., Matthias Vaska, Jonathan L. Podmore, Roxanne L. Richman, Scott C. Anderson, Gerard Champsaur, John E. Crowe
  • Publication number: 20110144491
    Abstract: A directable acoustic transducer assembly is presented for use in a medical insertion device (MID). In an embodiment, the assembly aims an acoustic signal in response to a sensed or detected force or load imposed on the MID. The directable acoustic transducer assembly includes a switch array and a plurality of directional acoustic transducer elements. The switch array responds to the force or load and activates the directional acoustic transducer elements closest to the source of the force or load. The switch array may include a plurality of switches, at least one of which responses to a force or load and may activate directional acoustic transducer elements having a target tissue in the field of view. The assembly includes embodiments that are responsive to various loads. A directable acoustic transducer assembly may be part of a diagnostic and/or therapeutic system, such as an RF ablation system.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 16, 2011
    Inventors: John W. Sliwa, Stephen A. Morse
  • Publication number: 20110066083
    Abstract: A wearable treatment or therapy apparatus for provision of an acoustically enabled or acoustically enhanced treatment or therapy to a patient or treatment subject is provided. Also provided are apparatuses for delivering an acoustic or acoustically-aided therapy or treatment to a patient or treatment-subject.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 17, 2011
    Inventors: Carol A. Tosaya, Lee Blumenfeld, John W. Sliwa, JR.
  • Publication number: 20110028848
    Abstract: A device for measuring a spatial location of a tissue surface, such as the interface between different types of tissues or between tissue and body fluids, generally includes an elongate catheter body having a distal end portion, a plurality of localization elements carried by the distal end portion, and at least one pulse-echo acoustic element carried by the distal end portion. The localization elements allow the catheter to be localized (e.g., position and/or orientation) within a localization field, while the acoustic element allows for the detection of tissue surfaces where incoming acoustic energy will reflect towards the acoustic element. A suitable controller can determine the location of the detected tissue surface from the localization of the distal end portion of the catheter body. Tissue thicknesses can be derived from the detected locations of multiple (e.g., near and far) tissue surfaces. Maps and models of tissue thickness can also be generated.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Inventors: Cem Shaquer, John W. Sliwa, Zhenyi Ma, Jeremy D. Dando
  • Patent number: 7877854
    Abstract: A focused ultrasound transducer includes a first ultrasonic emitter and at least one metallic ultrasonic lens acoustically coupled thereto. The emitter generates ultrasonic energy that propagates along a beam path projecting therefrom. The at least one metallic ultrasonic lens is positioned at least partially in the beam path so that it can direct (e.g., focus, defocus, and/or collimate) in at least one direction (or along at least one plane) at least some of the ultrasonic energy propagating from the emitter. The metallic lens may be formed by extrusion, by molding (e.g., diecast molding or thermoforming), or by sintering (e.g., powder metallurgy). The metallic lens also advantageously functions as a heat sink, improving thermal performance of the ultrasound transducer.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: February 1, 2011
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John W. Sliwa, John P. Goetz, Zhenyi Ma
  • Publication number: 20100321478
    Abstract: Volumetric three-dimensional (3-D) graphical or computer displays are disclosed herein that are capable of presenting objects, data, scenes or other visual information in a realistic or solid-like manner, allowing for an unaided observer to observe such static or moving objects from multiple perspectives with natural depth-cues and superior image quality. We utilize in this refined approach moving-screens formed from particulate-arrays and we preferably optically project multiple image sub-slices on each such flying-screen as it passes through the image-volume thereby minimizing particulate mass-flow since only once screen per image-volume is needed to present the several or many necessary slices of each volumetric frame.
    Type: Application
    Filed: April 8, 2008
    Publication date: December 23, 2010
    Inventors: John W. Sliwa, Carol A. Tosaya