Patents by Inventor John Yamartino

John Yamartino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070051471
    Abstract: One embodiment of the present invention is a stripping reactor that includes: (a) a remote plasma source disposed to output a gas; (b) a gas distribution plate connected to ground that transmits the gas output from the remote plasma source to a processing chamber; (c) a wafer support disposed in the processing chamber; (d) a wafer support assembly disposed about the wafer pedestal that includes an outer conductive peripheral structure connected to ground; and (e) an RF power supply connected to supply RF power to the wafer support.
    Type: Application
    Filed: October 4, 2002
    Publication date: March 8, 2007
    Inventors: Mark Kawaguchi, Elizabeth Pavel, James Papanu, Jonathan Mohn, John Yamartino, Christopher Lane, Michael Barnes, Robert Wunar
  • Publication number: 20060155410
    Abstract: In at least one embodiment, the present invention is a method for thin-film process chamber data analysis, which includes acquiring chamber data, defining an adjustment portion of the chamber data and a steady-state portion of the chamber data, and forming a chamber model having an adjustment portion and a steady-state portion. The method can further include comparing the chamber model with a subject chamber to provide a chamber data comparison and utilizing the chamber data comparison.
    Type: Application
    Filed: January 10, 2005
    Publication date: July 13, 2006
    Inventor: John Yamartino
  • Patent number: 6352049
    Abstract: The present invention provides an apparatus and method, for plasma assisted processing of a workpiece, which provides for separate control of species density within a processing plasma. The present invention has a processing chamber and at least one collateral chamber. The collateral chamber is capable of generating a collateral plasma and delivering it to the processing chamber. To control the densities of the particle species within the processing chamber the present invention may have: a filter interposed between the collateral chamber and the processing chamber, primary chamber source power, several collateral chambers providing separate inputs to the processing chamber, or combinations thereof. Collateral plasma may be: filtered, combined with primary chamber generated plasma, combined with another collateral plasma, or combinations thereof to separately control the densities of the species comprising the processing plasma.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: March 5, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Gerald Yin, Arnold Kolandenko, Hong Ching Shan, Peter Loewenhardt, Chii Lee, Yan Ye, Xueyan Qian, Songlin Xu, Arthur Chen, Arthur Sato, Michael Grimbergen, Diana Ma, John Yamartino, Chun Yan, Wade Zawalski
  • Patent number: 6247425
    Abstract: The present invention provides an apparatus and method for processing a workpiece in an inductively coupled plasma reactor. Inductive power is applied to the reactor to generate a plasma. A magnetic field is generated within the plasma reactor having lines of force oriented perpendicular to the workpiece surface. It is a feature of the invention to control the electron temperature near the surface of the workpiece by controlling the applied magnetic field. It is a further feature to increase average ion density near the workpiece without otherwise causing damage to the workpiece due to uneven charge build-up. The applied magnetic field can be time invariant or time variant. In both cases processing can be optimized by adjusting the magnitude of the magnetic field to a level just below where damage due to uneven charge build-up occurs. With the time variant field, the average ion density can be adjusted with respect to average electron temperature.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: June 19, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Dimitris Lymberopoulos, Peter Loewenhardt, John Yamartino
  • Patent number: 6085688
    Abstract: The present invention provides an apparatus and method for processing a workpiece in an inductively coupled plasma reactor. Inductive power is applied to the reactor to generate a plasma. A magnetic field is generated within the plasma reactor having lines of force oriented perpendicular to the workpiece surface. It is a feature of the invention to control the electron temperature near the surface of the workpiece by controlling the applied magnetic field. It is a further feature to increase average ion density near the workpiece without otherwise causing damage to the workpiece due to uneven charge build-up. The applied magnetic field can be time invariant or time variant. In both cases, processing can be optimized by adjusting the magnitude of the magnetic field to a level just below where damage due to uneven charge build-up occurs. With the time variant field, the average ion density can be adjusted with respect to average electron temperature.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: July 11, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Dimitris Lymberopoulos, Peter Loewenhardt, John Yamartino