Patents by Inventor John Zellner

John Zellner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220253206
    Abstract: Systems and related methods are provided for improving cognitive function of a wireless power system designer and simulate various aspects of a wireless power system as an aid in making design selections in a tradeoff environment. Various embodiment enable such improved cognitive function by providing machine instructions that generate various graphical user interfaces which enable the wireless power system designer to visualize, compare, select, and change a variety of independent and dependent variables pertaining to a plurality of potential wireless power systems, a plurality of potential diodes, and a plurality of potential coplanar striplines for use in a plurality of operational environments as desired by the wireless power system designer. Aspects of various embodiments display design constraint warnings thereby providing visual display of design space solutions that do not violate various design constraints.
    Type: Application
    Filed: August 12, 2021
    Publication date: August 11, 2022
    Applicant: The United States of America, as represented by the Secretary of the Navy
    Inventors: Corey Alexis Marvin Bergsrud, Alex John Zellner, Kristina Rose Preucil
  • Patent number: 10574097
    Abstract: Systems and related methods are provided for improving cognitive function of a wireless power system designer and simulate various aspects of a wireless power system as an aid in making design selections in a tradeoff environment. Various embodiment enable such improved cognitive function by providing machine instructions that generate various graphical user interfaces which enable the wireless power system designer to visualize, compare, select, and change a variety of independent and dependent variables pertaining to a plurality of potential wireless power systems, a plurality of potential diodes, and a plurality of potential coplanar striplines for use in a plurality of operational environments as desired by the wireless power system designer. Aspects of various embodiments display design constraint warnings thereby providing visual display of design space solutions that do not violate various design constraints.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: February 25, 2020
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Corey Alexis Marvin Bergsrud, Alex John Zellner
  • Publication number: 20180342910
    Abstract: Systems and related methods are provided for improving cognitive function of a wireless power system designer and simulate various aspects of a wireless power system as an aid in making design selections in a tradeoff environment. Various embodiment enable such improved cognitive function by providing machine instructions that generate various graphical user interfaces which enable the wireless power system designer to visualize, compare, select, and change a variety of independent and dependent variables pertaining to a plurality of potential wireless power systems, a plurality of potential diodes, and a plurality of potential coplanar striplines for use in a plurality of operational environments as desired by the wireless power system designer. Aspects of various embodiments display design constraint warnings thereby providing visual display of design space solutions that do not violate various design constraints.
    Type: Application
    Filed: March 9, 2018
    Publication date: November 29, 2018
    Applicant: The United States of America, as represented by the Secretary of the Navy
    Inventors: Corey Alexis Marvin Bergsrud, Alex John Zellner
  • Patent number: 9182942
    Abstract: A Dynamic Motion Element for use in testing crash avoidance technologies in a subject vehicle is disclosed. The Dynamic Motion Element includes a body comprising an upper surface wherein the upper surface is adapted to support a soft-body having the size and shape of a vehicle. The body has at least one tapered side so as to allow the subject vehicle to drive up to and on the upper surface with minimal to no damage to the subject vehicle or the Dynamic Motion Element. The body is supported by at least two rotational structures, including at least one driven rotational structure coupled with an electronically-controlled power source. The electronically-controlled braking system applies braking force to at least one of the rotational structures.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: November 10, 2015
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Publication number: 20140195075
    Abstract: A Guided Soft Target System is disclosed that includes a subject vehicle and a dynamic motion element (DME). The subject vehicle may be accelerated at an arbitrary rate to a speed corresponding to the speed in its own predetermined trajectory. Each of the DME vehicles computes its target speed as a ratio of the subject vehicle's speed at each waypoint location, and modulates its speed control to achieve this target speed. To further compensate for timing differences along the target path, each DME computes its longitudinal error along the path relative to its target position, as dictated by the position of the subject vehicle within its own trajectory, and each DME's target speed is modulated in order to minimize the longitudinal error along the predetermined trajectory.
    Type: Application
    Filed: March 13, 2014
    Publication date: July 10, 2014
    Applicant: Dynamic Research Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Patent number: 8762044
    Abstract: A Guided Soft Target System is disclosed that includes a subject vehicle and a dynamic motion element (DME). The subject vehicle may be accelerated at an arbitrary rate to a speed corresponding to the speed in its own predetermined trajectory. Each of the DME vehicles computes its target speed as a ratio of the subject vehicle's speed at each waypoint location, and modulates its speed control to achieve this target speed. To further compensate for timing differences along the target path, each DME computes its longitudinal error along the path relative to its target position, as dictated by the position of the subject vehicle within its own trajectory, and each DME's target speed is modulated in order to minimize the longitudinal error along the predetermined trajectory.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: June 24, 2014
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Patent number: 8755999
    Abstract: A cam actuated hydraulic brake system and an in plane tensioner pulley belt drive system may be used on autonomous vehicles, such as dynamic motion elements for the evaluation of various crash avoidance technologies. The brake system utilizes a cam driven by a servo to push the piston push rod of a hydraulic master brake cylinder, thus distributing pressurized brake fluid throughout the brake system. The pulley drive system uses an articulating arm for the driven pulley, and that arm may also have connected to it one or two tension pulleys, each of which is in contact with the belt. Because the drive pulley and the tensioner pulleys pivot about the same pivot axis, the needed belt length remains nearly constant across the entire range of the articulating arm.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: June 17, 2014
    Assignee: Dynamic Research Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Patent number: 8751143
    Abstract: A cam actuated hydraulic brake system and an in plane tensioner pulley belt drive system may be used on autonomous vehicles, such as dynamic motion elements for the evaluation of various crash avoidance technologies. The brake system utilizes a cam driven by a servo to push the piston push rod of a hydraulic master brake cylinder, thus distributing pressurized brake fluid throughout the brake system. The pulley drive system uses an articulating arm for the driven pulley, and that arm may also have connected to it one or two tension pulleys, each of which is in contact with the belt. Because the drive pulley and the tensioner pulleys pivot about the same pivot axis, the needed belt length remains nearly constant across the entire range of the articulating arm.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: June 10, 2014
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Patent number: 8706395
    Abstract: A cam actuated hydraulic brake system and an in plane tensioner pulley belt drive system may be used on autonomous vehicles, such as dynamic motion elements for the evaluation of various crash avoidance technologies. The brake system utilizes a cam driven by a servo to push the piston push rod of a hydraulic master brake cylinder, thus distributing pressurized brake fluid throughout the brake system. The pulley drive system uses an articulating arm for the driven pulley, and that arm may also have connected to it one or two tension pulleys, each of which is in contact with the belt. Because the drive pulley and the tensioner pulleys pivot about the same pivot axis, the needed belt length remains nearly constant across the entire range of the articulating arm.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: April 22, 2014
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Publication number: 20140058589
    Abstract: A Guided Soft Target System is disclosed that includes a subject vehicle and a dynamic motion element (DME). The subject vehicle may be accelerated at an arbitrary rate to a speed corresponding to the speed in its own predetermined trajectory. Each of the DME vehicles computes its target speed as a ratio of the subject vehicle's speed at each waypoint location, and modulates its speed control to achieve this target speed. To further compensate for timing differences along the target path, each DME computes its longitudinal error along the path relative to its target position, as dictated by the position of the subject vehicle within its own trajectory, and each DME's target speed is modulated in order to minimize the longitudinal error along the predetermined trajectory.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 27, 2014
    Applicant: Dynamic Research Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Publication number: 20140045631
    Abstract: A cam actuated hydraulic brake system and an in plane tensioner pulley belt drive system may be used on autonomous vehicles, such as dynamic motion elements for the evaluation of various crash avoidance technologies. The brake system utilizes a cam driven by a servo to push the piston push rod of a hydraulic master brake cylinder, thus distributing pressurized brake fluid throughout the brake system. The pulley drive system uses an articulating arm for the driven pulley, and that arm may also have connected to it one or two tension pulleys, each of which is in contact with the belt. Because the drive pulley and the tensioner pulleys pivot about the same pivot axis, the needed belt length remains nearly constant across the entire range of the articulating arm.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 13, 2014
    Applicant: Dynamic Research Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Publication number: 20140039727
    Abstract: A cam actuated hydraulic brake system and an in plane tensioner pulley belt drive system may be used on autonomous vehicles, such as dynamic motion elements for the evaluation of various crash avoidance technologies. The brake system utilizes a cam driven by a servo to push the piston push rod of a hydraulic master brake cylinder, thus distributing pressurized brake fluid throughout the brake system. The pulley drive system uses an articulating arm for the driven pulley, and that arm may also have connected to it one or two tension pulleys, each of which is in contact with the belt. Because the drive pulley and the tensioner pulleys pivot about the same pivot axis, the needed belt length remains nearly constant across the entire range of the articulating arm.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Applicant: Dynamic Research Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Patent number: 8589062
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: November 19, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Patent number: 8583358
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: November 12, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Publication number: 20130162479
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Application
    Filed: June 25, 2012
    Publication date: June 27, 2013
    Applicant: DYNAMIC RESEARCH INC.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Patent number: 8457877
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: June 4, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Patent number: 8447509
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing a sensor signature substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network. Specific geometries for the DME have been discovered that minimize the risk of the DME flipping up and hitting or otherwise damaging or disrupting the ride of typical test vehicles during impact of the test vehicles with the GST, all while minimizing the effect of the DME on the sensor signature of the GST.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: May 21, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Patent number: 8428863
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: April 23, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Patent number: 8428864
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: April 23, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Publication number: 20130018528
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Application
    Filed: June 25, 2012
    Publication date: January 17, 2013
    Applicant: DYNAMIC RESEARCH INC.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner